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INTRODUCTION 

The elderly segment of the population is growing 
worldwide. In Canada, seniors (i.e. persons over 65) 
comprise the fastest growing segment of the 
population [1] and are expected to form 18% of the 
Canadian population by the year 2021 [2]. This trend 
will place an increasing strain on the health care 
system as people tend to require more health care as 
they age [3]. Large cost savings can be achieved if 
elderly persons are able to continue to live 
independently, a situation which is often far preferred 
by patients to the alternatives of institutionalization in 
hospitals or long term care facilities. Diverse 
technologies are being developed to facilitate this so-
called ‘aging in place’ [4-8]. However, most monitoring 
system initiatives thus far have focused on the 
bedroom, bathroom, and exit doors, and there remains 
a significant need for safety monitoring in the kitchen. 
Specifically, the stove is the number one cause of fire 
accidents in the residence [9]. As people age, some 
are faced with declining mental acuity due to age-
related illnesses. This in turn can lead to dangerous 
behaviour around the stove top where the stove is 
forgotten and left unattended, burners may be left on, 
and pots may boil dry. A stove top monitoring system 
would go a long way towards increasing kitchen safety 
by detecting and correcting dangerous situations 
before a fire occurs. 

At Carleton University, we are creating a stove top 
monitoring system based on thermal imaging to track 
stove top status and associated human activity in 
order to generate alerts as appropriate. Ultimately, this 
system will continuously monitor the status of all 
burners (i.e. on/off, occupied/unoccupied, 
warming/cooling, etc) and detect human activity 
associated with the stove top. These generated events 
will be analyzed by a separate system and alerts will 
be generated ranging from gentle audible reminders to 
emergency action. This paper focuses on our efforts to 
detect human activity on a stove top using an infrared 
camera. Monitoring of other events (pot presence, pot 
boiling dry, etc) and the subsequent alert generation 
remain as future work, and will be presented in a 
separate paper. 

SYSTEM AND METHODS 

The system components include an infrared 
camera (FLIR model A40, http://www.flir.com/CA/) 
mounted on a tripod above a stove top, connected to a 
laptop computer via a FireWire connection. All 
processing is done in MATLAB at this point. The 
system operates in two modes: calibration and 
monitoring. During calibration, the system 
automatically determines the number, perimeter, 
centroid, and size of each burner. The system does 
not assume that all burners are circular, which 
accommodates irregular burner shapes and skewed 
images due to off-center camera placement. To 
calibrate the system, all burners are turned on at full 
heat for 60 seconds. The captured image is converted 
to a binary mask by applying a temperature threshold 
of 80 degrees Celsius. Resulting blobs are dilated to 
connect individual hot spots within a burner, and any 
remaining blobs of less than 7 pixels are removed as 
these small isolated blobs are likely to represent 
thermal noise. The remaining blobs represent the 
burners and the perimeter, size and centroid are 
calculated for each. Please see the results section 
below for sample results using both a 2-burner and a 
4-burner stove top. 

When in monitoring mode, the camera 
continuously captures and analyzes images. Various 
frame rates have been investigated. A minimum frame 
rate of 1 frame per 5 seconds was chosen such that 
typical human activity is likely to be captured by at 
least one frame. To detect human activity, each frame 
is thresholded with a temperature of 30 degrees 
Celsius. Burner regions are excluded, as defined by 
the masks generated during calibration, including a 
margin of twice the nominal burner radius to account 
for possible spreading of heat or the presence of an 
oversized pot. A number of regions representing 
thermal noise are often included in the resulting image. 
Two strategies are employed to differentiate between 
human activity and thermal noise. The first strategy 
leverages the fact that human activity originates from 
outside of the field of view of the camera (i.e. the stove 
top). The field of view is set such that a small margin 
surrounding all four sides of the stove top is included. 
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Figure 1: Calibration results for 4-burner (top) and 
2-burner (bottom) stove tops showing correct 
burner identification. 

This ensures that thermal noise on the cooking surface 
does not extend to the edge of the image, since the air 
gap surrounding most cooking surfaces prevents 
significant heat conduction beyond the cooking surface 
itself. Even in the absence of an air gap, such as a 
surface-mounted cooking surface embedded in a 
counter, heat conduction to the surrounding surfaces 
is expected to be minimal due to the change in 
material between the cooking surface and the 
surrounding counter. Therefore, all potential regions of 
human activity are filtered such that only blobs 
connected to the image borders are kept. This 
significantly reduces the rate of false positives, 
however occasionally thermal noise reaches the image 
border (e.g. through dense steam escaping an 
uncovered pot). The second strategy to reduce false 
positives takes advantage of the fact that human 
activity tends to be transient while thermal noise is not. 
Therefore when a new candidate blob appears in the 
image, it is tracked for 30 seconds. If the blob remains 
within the field of view for more than 30 seconds, it is 
rejected as thermal noise. These two strategies (i.e. 
border filtering and time filtering) result in excellent 
sensitivity and specificity as detailed below. 

RESULTS 

Calibration Mode 

Several experiments were conducted using two 
different stove tops: a 2-burner electric coil stove top 
and a 4-burner electric ceramic stove top. Calibration 
was successful on both stoves, with the number of 
burners identified automatically. Calibration results are 
illustrated in Figure 1 below. 

Monitoring Mode 

To evaluate the performance of the monitoring 
mode, four experiments were conducted: 2A and 2B 
were conducted on the 2-burner stove top (see Figure 
3), while 4A and 4B used the 4-burner ceramic stove 
top (see Figure 2). In all experiments, the calibration 
protocol described above was first executed to 
determine the burner locations. In experiments 2A and 
2B, only one burner was active and was covered with 
a pot of water. In experiments 4A and 4B, two burners 
were active, both covered by pots of water. The four 
experiments are described in Table 1 below. For the 
purpose of evaluating the human activity detection 
algorithms, a frame was considered to truly contain 
human activity if either a portion of a human (e.g. 
hand) was visible within the frame, or if an object was 
manipulated by an unseen hand (e.g. a pot was 
moved). An ‘event’ is a contiguous series of frames 
displaying human activity. 

Table 1: Experiment Description 

 Experiment 
Description Human Activity 

 Frame 
Period 

Total 
Frames Events Frames 

2A 10s 83 3 19 
2B 5s 37 2 8 
4A 1s 449 15 136 
4B 1s 399 13 79 
The human activity monitoring algorithm was 

applied to the data from each experiment and frames 
were noted where human activity was detected. The 
sensitivity and specificity for each experiment are 
provided in Table 2 below on a per-frame basis. As 
can be seen, the specificity was excellent 
(mean=99%) indicating a very low false positive rate. 
Likewise, the sensitivity of the algorithm is very good 
on all experiments (mean=90%). The only experiment 
that saw a significant number of missed positive 
frames was 4A. These were caused by the surface 
temperature of the user’s arm falling below the 
threshold of 30 degrees due to thick clothing. As 
discussed below, this had no impact on per-event 
accuracy since the onset and termination of human 
activity was correctly detected as the bare hand 
entered and left the image frame.   

Table 2: Human Activity Monitoring Performance 

 Per Frame 
 Sensitivity Specificity 
2A 0.89 1.0 
2B 1.0 0.96 
4A 0.75 1.0 
4B 0.94 0.99 
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Figure 2: Thermal image of 4-burner stove top 
showing human activity (top-right) and thermal noise 
(top-left). 

Since this system is meant to detect human 
activity events, it makes more sense to evaluate the 
performance of the system in terms of events rather 
than individual frames. A single event may span 
several frames. For example, when a user reaches 
into the field of view of the camera, removes a pot lid, 
stirs the contents, replaces the lid, and leaves the 
scene, this single event may span 20 seconds. In our 
experimental results, at least one frame from each true 
human event was correctly detected by the algorithms. 
Hence, the system correctly identifies ALL true events 
leading to a sensitivity of 1.0. When considering the 
specificity of the system in terms of events, only two 
events were falsely predicted (i.e. 2 frames were 
predicted to contain human activity that did not overlap 
a true human activity event). Both of these false 
positive events were due to individual frames (28 and 
81) where dense steam from an uncovered pot was 
observed at the frame border. In both cases, the 
billowing effect of the steam caused its centroid to 
differ sufficiently over a period of 30 seconds that it 
also passed the temporal filter. Therefore this thermal 
noise was incorrectly classified as human activity. All 
other instances of thermal noise were rejected by 
either the border or temporal filter stages as illustrated 
in a sample frame (Exp 2A, frame 53) in Figure 3. One 
false positive frame was observed in experiment 2B, 
but it only served to extend a real event by 1 frame. 

Of the two fundamental types of error (I vs. II), 
overprediction is the most dangerous since an 
unattended stove may fail to generate alerts if human 
activity is falsely detected. The underprediction error 
has must lesser consequences where a user may 
simply receive unnecessary reminders to attend to 
their stove. In total, two false positive events occurred 
while all 33 true human activity events were correctly 
identified leading to highly acceptable rates of each 
error type. 
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Figure 3: Thermal noise (from a laptop vent) is visible 
in the bottom right corner of the image. Although is this 
noise is connected to the image border, thereby 
bypassing the border filtering step, it was correctly 
rejected by the temporal filter since its centroid 
remains constant over 30 seconds.  

DISCUSSION 

It is important when considering which 
technologies may be deployed in a home monitoring 
scenario to consider the perceived privacy of the user 
as this has a large impact on the acceptance of the 
technology by the user. For example, many users will 
feel uneasy with the installation of a pan-tilt-zoom 
camera in their home, even if they have assurances 
that the data is only processed locally and never 
leaves their home. With this in mind, we have limited 
the field of view of the camera to cover only the stove 
top with a small margin around it. Furthermore, the 
camera orientation is also fixed, thereby increasing the 
user’s confidence that their privacy is not being unduly 
invaded.  

Positioning the camera immediately over the 
cooking surface, by attaching it to the hood vent for 
example, has advantages for image processing in that 
the burners will not be skewed by camera angle. 
However, such a position may lead to an accumulation 
of cooking grease on the camera lens, thereby 
occluding the view over time. Instead, the camera will 
ultimately be positioned slightly off-center and the 
image processing algorithms have been designed to 
handle ellipsoid burners rather than assuming a 
specific geometry such as perfect circles.  

This system is designed to be retrofit on an 
existing stove top. In this way, this system differs from 
other potential solutions which would monitor stove 
status (i.e. burner state and temperature) through 
direct measurement of current flow to the burners and 
via thermocouples on the stove surface. This is critical 
in order to keep the cost of the monitoring system at a 



minimum rather than requiring the user to purchase a 
new appliance with embedded sensors. This is an 
especially important consideration for elderly users 
who are often on fixed incomes. Of course, any 
commercial system would make use of commercial off-
the-shelf components rather than a high-end infrared 
camera and such a setup will be evaluated in future 
work. 

While the initial target audience for this device are 
elderly persons with declining mental acuity, other 
populations may benefit from such a stove monitoring 
system. For example, persons who are 
developmentally delayed or who have cognitive 
disabilities may also benefit from such a system. 

CONCLUSIONS 

A stove top monitoring system is being developed 
to assist the elderly to live independently while 
ensuring that stove use follows best practices for 
safety. Early results show that the detection of human 
activity can be achieved with high sensitivity and 
specificity, with no missed positive events and only a 
single false positive event observed over four 
experiments. The final system will combine 
knowledge of human activity with stove state (burners 
on/off, warming/cooling, occupied/unoccupied, etc) in 
order to generate appropriate alerts to greatly increase 
safety in the kitchen. Such a system is expected to 
increase the quality of life for elderly users by making it 
possible to safely live independently in their own 
home. 
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