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INTRODUCTION 

The LabPET™, a commercial all-digital high 
resolution small animal APD-based PET scanner [1], 
[2], uses phoswich detectors to increase pixelization 
per electronic channel. The novel design of the 
LabPET™ phoswich detectors consists of two different 
scintillation crystals, arranged side by side and 
coupled to an avalanche photodiode (APD) [3].  

Various approaches have been proposed to 
identify the scintillating crystal in phoswich detectors 
[4]-[9]. The most powerful CI algorithms are digital-
based and appear to be derived from the command-
and-control theory methods such as the Auto-
Regressive Moving-Average with eXogeneous variable 
(ARMAX) model [10], [11] or on simpler adaptive filter 
theory approaches relying on Recursive-Least-Square 
(RLS) or Least-Mean-Square (LMS) algorithms applied 
to an Auto-Regressive (AR) model [12]. Even though 
the digital architecture of LabPET™ enables the use of 
complex CI algorithms, these approaches are 
computationally expensive and are too time 
consuming for real-time implementation. 

A recent Wiener filter based CI algorithm 
computes both the crystal light yield (b0) and 
scintillation decay (a1) constants of each crystal and 
separate two crystal species by applying a threshold to 
the a1 spectra [13]. The algorithm was shown to 
achieve high crystal discrimination accuracy (~98%). 
The Wiener filter provides an optimum solution and 
fast calculations for CI, and taking advantage of its 
highly parallel layout, it can be implemented for real-
time computation in high capacity Field Programmable 
Gate Array (FPGA). However, in its proposed 
implementation, the non-recursive parameter (b0) was 
not considered in the CI process, even if it must be 
computed.  

We propose a 2-fold faster implementation of the 
Wiener filter-based real time CI algorithm, which takes 
into consideration both the light yield b0 and decay 
constant a1 parameters of each individual crystal to 
evaluate the percentage of their contribution in the 
event signal.  

MATERIALS AND METHODS 

In this study, the LabPET™ parallel data 
acquisition (DAQ) electronic chain was used to collect 
data.  It is a light-to-voltage converter with a shaping 
stage which consists of an APD, a charge sensitive 
preamplifier (CSP), an anti-aliasing filter and an analog 
to digital converter (Fig.1).  One phoswich detector 
module consisting of LYSO-LGSO (tr ~40 ns and ~65 
ns) crystals was investigated in these experiments. 
Individual crystals of the phoswich had a volume of 
2 × 2 × ~12 mm3 and were placed in optically contact 
on one long side, and coupled to an APD in a similar 
fashion as in the LabPET™ modules. The phoswich 
detector was installed on the DAQ chain and exposed 
to a 1 mCi 68Ge rod source of 511 keV annihilation 
photons. A preprocessing stage consisting of a filtered 
interpolation, normalization, and decimation was 
performed before applying the Wiener filter in order to 
improve the CI performance and to reduce the 
processing time. The new CI algorithm method 
consists of two steps: first, a calibration process in 
which the model of each crystal - in the Z domain - is 
extracted (Fig. 2.a); second, the DAQ model is 
incorporated into the crystals model and a Wiener filter 
evaluates the contribution (in %) of each crystal in the 
output signal (Fig. 2.b). 

Calibration Process: Crystal Model Extraction 

Prior to the fast CI process, a calibration must take 
place where a model of each individual crystal is 
empirically estimated through a Wiener filter scheme 
(Fig. 2). These models take the form of discrete linear, 
time-invariant (LTI) systems:  
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where, b0 is the gain coefficient, a1 the crystal decay 
time and x(n) and y(n), the input data and filter output. 
Note that x(n) describes the impulse response of the 
DAQ chain and contains all a priori knowledge of the 
electronic DAQ chain.   



 
Fig. 1 The LabPET™ data acquisition chain (DAQ). Phoswich 
detector consisting of two different crystals is excited by a source 
of 511 keV photons; the recorded signal d(n) is the output signal of 
the acquisition chain.  
 
 

  
 

Fig. 2. a)  Calibration process based on a Wiener filter algorithm to 
extract crystal parameters b0 and a1. Recorded events d(n) 
registered as shown in Fig. 1 are compared to an estimated output 
signal model for a minimum error.  b) The Crystal Identification (CI) 
process based on a Wiener filter algorithm. The DAQ chain model 
evaluated in a) is incorporated into the model of each crystal 
extracted from the calibration process. The individual responses of 
the DAQ chain and crystals, x1(n) and x2(n), are weighted by the 
contribution (in %) of each crystal, p1 and p2, to generate the output 
signal.  
 

A specific cost function  minimizes the 
expected value E{•} of the square differences 
between the recorded event d(n) and the computed 
output y(n) in order to recover b0 and a1 parameters 
[13].  

( 10 , abJ )

The spectra of the b0 and a1 parameters, extracted 
from a set of 50,000 events acquired at the beginning 
of the experiment, are spread into two distinct 
Gaussian-like peaks. After smoothing and fitting both 
distributions with Gaussian functions, the maximum of 
each peak is kept and used to generate a model of 
each crystal [b01 a11] and [b02 a12]. The impulse 
response of each modeled crystal, h1(n) and h2(n), at 
this point will be considered as constant values.       

From a signals and systems theory point of view, 
serially connected LTI sub-systems may be reordered 
without affecting the behaviour of the higher-level 
system. Thus, after rearranging the blocks, the digital 
DAQ model can be incorporated into the model of 

each crystal to generate the detector impulse 
responses x1(n) and x2(n) (Fig. 2.b). Therefore, x1(n) 
and x2(n) will be incorporated in the next step of the 
proposed algorithm as a priori knowledge.  

Ultra-Fast Wiener Filter Based Crystal Identification 

Theoretically, the event signal coming from a 
phoswich detector can be one of these two cases: 1) 
the signal is issued only from one of the crystals; 2) 
the signal is colored by both crystals because of 
Compton scatter within the phoswich detector. 
Therefore, the output can be considered as the sum of 
crystals impulse responses weighted by percentages 
p1 and p2, where p1 and p2 are dependent on the 
energy deposited in each individual crystal and 
represent the respective contributions with 
characteristic frequency signature in the output signal 
(Fig. 2). As the output signal is normalized, the sum of 
contributions from crystal 1 and 2 (p1 and p2) can be 
considered to be equal to one (100%) irrespective of 
the total energy absorbed in the phoswich detector, 
including Compton events. Therefore, p2 can be 
rewritten as 1-p1, and the output signal y(n) will be: 
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As x1(n) and x2(n) calculated in the calibration 
process are invariable impulse responses derived for 
each individual crystal, the CI process can be reduced 
to calculate only the percentage contribution of crystal 
1 (p1) in the output signal. A threshold applied to p1 will 
thus identify whether the signal is generated mostly by 
crystal 1 or crystal 2.  

In order to recover p1, a Wiener filter is used to 
minimize the error between the computed output y(n) 
and the recorded event d(n) by minimizing a specific 
cost function J(p1), the expected value E{•} of the 
square differences between d(n) and y(n). 

RESULTS 

Discrimination performances were investigated 
experimentally. In this study, the crystal 1 is 
considered as the faster crystal in term of scintillation 
decay time (LYSO in LYSO-LGSO phoswich) and 
crystal 2 the slower one (LGSO). Fig. 3 shows the 
spectra of a1 and b0 extracted from the calibration 
process for the LYSO-LGSO phoswich detector. The 
individual crystal models required for the CI step were 
computed. Figs. 4 shows the spectra of the 
percentage p1 plotted for the 50,000 events acquired 
by LYSO-LGSO. A threshold chosen at the optimal 
minimum of the p1 spectra is then applied for the 
crystal discrimination. This means that events having a 
p1 higher than threshold have crystal 1 characteristics 
while events having p1 smaller than threshold are 



assumed to come from crystal 2. As it can be seen in 
Fig. 5 two Gaussian-like shape peaks appear around 
0% and 100% of each p1 spectra, indicating that the 
majority of events have been absorbed either by 
crystal 1 (p1~ 100) or by crystal 2 (p1~ 0). Because of 
an energy resolution of ~ 20% of our system [2], the 
distributions spread higher than 100% and lower than 
0%. Therefore, values in between 0% and 100% are 
composed from photons that went through a full 
interaction in one of the two crystals and also from 
Compton scatters within both crystals.    

After applying the identification based on p1 as 
described above, the a1 spectra were plotted for 
verification, in order to validate the CI process and 
calculate the discrimination error. As expected, two 
clearly separated distributions representing individual 
crystal events were obtained (Fig. 5). The identification 
error estimated as the area under the crossing point of 
the Gaussian curves was < 1.5% for the LYSO-LGSO 
phoswich detector. 

 

 
 
Fig. 3.  Spectra of b0 (gain) and a1 (scintillation decay) values 

obtained for 50,000 events issued from a LYSO-LGSO phoswich 
detector when exposed to a 68Ge (511 keV) 1 mCi rod source. 
Each Gaussian-like distribution peak represents the mean 
recursive and non-recursive constant values of crystals. 

 
 
Fig. 4.  Spectrum of 50,000 events of p1 (in %) for the LYSO-

LGSO phoswich acquired with and without energy thresholding. 

 
 

Fig. 5.  Crystal identification of LYSO-LGSO phoswich detector 
shown on a1 spectra 

 
 

Fig. 6.  Energy spectra of LYSO-LGSO phoswich after crystal 
identification. The lines show the thresholds applied between 
Compton scatters and photopeak events at crystal granularity. 
 

To further investigate the performance of the 
algorithm, the energy spectra of detected signals were 
plotted (Fig. 6). Compton scatter can be thresholded at 
crystal granularity even for a phoswich detector.   



DISCUSSION AND CONCLUSION 

A high-performance real-time CI algorithm was 
proposed and investigated with a phoswich detector 
used in the LabPET™. The method achieves at least 
similar CI rates as other digital methods investigated 
previously, but at half the computation burden. The 
proposed method allows the calibration process to be 
performed for every individual phoswich detector 
before applying the CI algorithm.  Considering the 
normal variations between detectors in large scale 
applications like a full-size PET scanner, this is one 
single major advantage of this method. Moreover, the 
parallel structure of the Wiener filter algorithm enables 
high processing speed by taking advantage of the 
parallel FPGA implementation that is possible with the 
LabPET™ scanner architecture. The new algorithm 
takes its major advantage of smaller quantity of 
identification parameter (%p1) computation and 
therefore to be at least 2-fold faster than the older 
Wiener filter algorithm.  

Therefore, based on these encouraging results, 
we foresee that the method could be coupled to a 
more powerful discrimination algorithm such as 
ARMAX [10] to discriminate more than two crystals in 
multi-scintillator detector assemblies for improved 
granularity or DOI readout. 
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