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Abstract In this paper we present a novel set of statistically self-
affine power laws and an algorithm for parameter estimation of a 
piecewise power law combination. The piecewise combination is 
applicable to irregular power spectral densities which do not follow 
the classic form of strict statistical self-affinity. The piecewise 
modeling also enables local analysis with variable magnification 
factors, which is very informative about the spectral distribution of 
the texture. Results of an experiment on simulated myoelectric 
signals are also presented. In this experiment, two conditions in 
which a single power law results in large errors are investigated. The 
results show that extension of the modeling to a piecewise 
combinational approach improves the accuracy and results in a 
better representation of the power spectrum. The results also show a 
great potential for applications of this approach to a wide variety of 
bio-signals with a multi-fractal behavior, which is very close to 
combinational mono-fractals in texture. 

 
1. INTRODUCTION 

 
Spectral dimensions, in form of the dimension of a 
random scaling fractal is potentially accurate for noise 
types whose power spectrum exhibits 1/fα behavior 
and strict self-affinity; that is, the magnitude of the 
power spectrum changes linearly with respect to the 
frequency in a bi-logarithmic plot. This implies that as 
we zoom into the signal, the distribution of the samples 
does not change; the samples are only subjected to 
some uniform scaling of the distribution at all 
frequencies. In such signals, a 1/fα power spectral 
estimation method, using a single line, provides a very 
good representation. This approach for extracting a 
spectral slope [1], however, is not directly applicable to 
most bio-signals, which exhibit non-linear spectral 
behavior, such as electroencephalography, 
myoelectric, and speech signals. In other words, 
textural information is not well represented using a 
single level complexity measure in form of the 1/fα 
approach. This has led to partitioning algorithms for 
modeling the power spectrum with piecewise linear 
models. Although dividing nonlinear surfaces to 
several lines might provide a good representation with 
low modeling errors, high dimensionality of the 
resulting spectral slopes make this approach 
computationally expensive. Moreover, these 
partitioning algorithms are not mathematically justified 
to be optimal for representing a fractal behavior, as 
they are optimized for power spectrum modeling. The 

resulting fractal indicators do not represent a unified 
fractal profile, as they are unrelated to one another. 
Linear partitioning results in arbitrary lines which do 
not mathematically represent a fractal, and may also 
be invalid for other partition frequency intervals. 

We have previously introduced a novel power law 
[2, 3] which represents a general statistically self-affine 
power spectrum. A general behavior that can be 
represented by this power law is very close to 
characteristics of many bio-signals, such as 
electroencephalography or myoelectric signals, which 
originate from a strongly non-linear summation of 
smaller components (neural firings or motor unit action 
potentials). In [5] it is shown that parameters extracted 
according to this power law are sensitive to the effects 
of contractile force and joint angle; meanwhile, they 
are independent from the changes of the muscle fiber 
conduction velocity (CV), an indicator of muscular 
fatigue. 

In this paper, we present a partitioning algorithm for 
piecewise general self-affine power laws. A single 
power law may not provide a sufficient representation 
of the spectrum when it is compressed or skewed (e.g. 
MES with low CV, or high depth motor units). The 
partitioning algorithm improves modeling accuracy by 
enabling the description of localized characteristics. 
This is similar to what motivated partition algorithms 
for the linear 1/fα approach; however, this algorithm 
assumes a fixed characteristic frequency for each 
partition, so the extracted indicators of each partition 
are computed as part of one profile. The actual profile 
is described with multiple indicators rather than 
several partitions represented with different exponents 
as with the linear 1/fα approach. This new partitioning 
algorithm is applied to simulated MESs, with results 
demonstrating improved modeling accuracy. 

 
2. GENERAL SELF-AFFINITY AND THE 

PARTITIONING ALGORITHM 
 

The power spectrum of a general self-affine signal 
could be represented in this form, 
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in Eq.(1), c is a scaling factor related to the power of 
the signal, q and g are high and low frequency 
indicators, and f0 is a characteristic frequency 
representing shifts among the distributions [1]. This 
power law is regulated by more than one exponent. 
Multiple exponents allow this power law to represent 
self-affine profiles in which zooming into the signal 
distribution of the samples is not changed but they are 
non-uniformly scaled and shifted in frequency in this 
form, 
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in Eq.(2), s is a 1-D temporal general self-affine signal 
and the probability distribution functions Pr[·] are 
simply scaled and shifted when the time is scaled by λ 
(zooming into s). 

This power law can provide a fairly accurate 
representation for the power spectrum of MESs [2]. 
For example, the MES power spectrum, with 
characteristics of a moderate biceps contraction (CV = 
5.5 m/s) and its modeled version using the general 
self-affine power law, differs by 2.0 % of the total 
signal power Fig. (1)). 

The error rate represents a curve fitting error; 
however, since we are using Eq.(1) for curve fitting, 
the error rate is also a measure of self-affinity. This is 
why we are interested in Eq.(1) as a fundamental 
measure rather than using other curves, which might 
result in a lower error rate. Also, note that this 
performance (low error rates) is limited to frequency 
ranges which are not close to the low cut off frequency 
around the DC level. This frequency range used in 
Fig.(1) is 30-300 Hz. Accuracy of this model 
decreases dramatically if the frequency range 1-30 Hz 
is included (error rate increases to 11.7 %). This 
suggests that the spectral behavior near the cut off 
frequency is representing different textural 
characteristics, which are not similar to the rest of the 
frequencies. There are also cases in which the degree 
of self-affinity of the MES power spectrum is 
decreased with respect to one single power law, 
where the whole power spectrum is modeled as a 
mono-fractal. We do not intend to investigate the 
effects of the MES parameters on the degree of the 
self-affinity, in this work; rather, to motivate a novel 
partitioning algorithm and piecewise modeling, we are 
introducing the piecewise power law in the context of 
two conditions to demonstrate its effectiveness: 1) low 
muscle fiber CV [4, 5]; and 2) high depth of detected 
active motor units (MUs). In both cases, a single 
power law results in large modeling errors. In the first 

case, a low CV which might be caused by muscular 
fatigue and/or disorders of a muscle [3, 4], resulting in 
a significant shift of the MES power spectrum towards 
lower frequencies [4, 5]. This phenomenon also 
causes a compressed low frequency behavior in the 
power spectrum, which is not effectively nor accurately 
characterized by a single power law as shown in 
Fig.(1) when CV = 3 m/s. In the second case, a high 
depth of the detected active MUs, which could be 
caused by an acute joint angle [2, 3], results in a skew 
of the higher power spectrum that cannot be 
accurately modeled by a single power law. In both 
cases, the error is more than 10 % of the total power 
of the signal. 
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Figure 1: MES power spectrum with CVs of 5.5 and 3 m/s. A single 

power law model adequately models the CV = 5.5 m/s MES 
spectrum but is highly erroneous for CV = 3 m/s. The piecewise 

power law modeling, with partitions P1 to P5, is very accurate for the 
CV = 3 m/s MES spectrum. 

 
To improve the modeling capabilities of the power 

law, we introduce a partitioning algorithm and model 
each partition of the spectrum by a single power law in 
the form of the Eq.(1). Each partition is assumed to 
have characteristic frequencies related to its local 
power distribution. The most important underlying 
factor in this algorithm is the fact that corresponding 
power laws of the all partitions add up to represent the 
whole power spectrum. This is in contrast to linear 
models which are only valid in their associated 
partition. In other words, the presented algorithm 
results in partition models that are only differ in their 
characteristic frequency and magnification. This novel 
algorithm allows the application of a single model that 
can be shifted and magnified towards different 
distributions for local analysis. Unlike linear piecewise 
model, the resulting model parameters are related and 
represent a unified fractal profile. The algorithm is 
formulated as follows. 

Step 1: The power spectrum is modeled by a 
single power law which is scaled by the order of the 
partitioning (i.e. number of the partitions) in this form, 
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in Eq.(3), N is the order of partitioning, PE(f) is a single 
power law as in Eq.(1) and Ppw(f) is the piecewise 
combinational power law which is obtained in this step. 
The parameters of Ppw(f) are estimated using the 
algorithm presented in [2]. In this algorithm an error is 
defined in this form, 
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in Eq.(4), P(f) is the actual MES power spectrum, 
Ppw(f) is the estimated version using the Eq.(3) and MT 
is the total number of samples in the power spectrum. 
It should be noted that the order of the partitioning N is 
lumped into the scaling factor and is treated as an 
unknown; its value is determined in the next step. 

Step 2: The power spectrum is then divided into N 
partitions, where N is determined using constraints 
around the error obtained in the previous step. Each 
partition represents a frequency interval in which the 
modeling error of Eq.(3) is located in between an 
empirical threshold and its multiples. Fig.(2), illustrates 
partitioning to different frequency ranges according to 
the modeling error rate. 

 

      
Figure 2: The modeling error is partitioned into 4 successive 

segments according to an empirical threshold τ. 
In Fig.(2), number of partitions is a function of the 

threshold τ. This threshold represents the level of 
accuracy the algorithm intends to do partitioning. In 
other words, it is the maximum fluctuation allowed in 
the texture of each partition. In this step, we rewrite 
Eq.(3) in this form, 

( ) ( ) ( ) ( )fPfPfPfP ENEEpw +++= ...21  (6) 
in Eq.(6), each element on the right side is a single 
power law in form of Eq.(1), each of which has a 
characteristic frequency fixed at the partition’s median 
frequency. This implies that the magnification in each 
frequency range is fixed so that the texture in local 
areas is represented uniformly with respect to the local 
energy distributions. 

Step 3: In this step, logarithm of the error 
represented by the Eq.(4) is differentiated with respect 
to the parameters of each model. By considering the 
median frequency of each partition as the 

characteristic frequency for each model a standard 
least square is formed. Similar to the algorithm 
presented in [1], model parameters can be computed 
by solving a linear set of equations in this form, 
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in Eq.(7), Qi = qi + gi, Gi = gi, and Ki = cif0i
2qi 

represent extracted parameters for each partition, 
where the least square solution is minimized for the ith 
partition. The a and b terms are a function of 
characteristic frequency and partition frequency range 
[1]. The characteristic frequency is estimated and the 
frequency ranges are fixed when Eq.(7) is used. Again 
we note that having a fix characteristic frequency, 
related to the median frequency of each partition, 
implies same magnification into the textural 
information. The extracted parameters can be 
represented in this form. 
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The overall piecewise modeling error can be 
computed by adding up all the errors obtained in the 
previous step in this form, 
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in Eq.(9), N is the number of partitions and Mi is the 
number of samples in the ith partition. As previously 
stated, this error rate is a measure of the fitting 
accuracy and also represents the degree of self-
affinity.  

 
3. METHODS AND MATERIALS 

 
3.1 Simulations 

 
MESs were simulated using a general purpose 
structural model-based simulator [6]. For this 
experiment, 4 sets of MESs were simulated, with each 
set consisting of 10 MESs, which are 3 s long. In first 
and second sets, MESs have a low CV (3 m/s) and 
normal CV (5.5 m/s), respectively. In third and fourth 
sets, MESs have deep active MUs (35 mm) and an 
average active depth (20 mm), respectively. The 
simulation parameters were used considering [4], 
summarized in Table I. 
 
3.2 Processing 
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The amplitude of the MESs was normalized before 
power spectrum estimation. The power spectrum of 
the MES was estimated using Welch’s method [7]. For 
averaging, a Hamming window with a temporal width 
of 256 samples was applied, with a 50% overlap 
between windows. 

To determine an optimal threshold for the 
partitioning algorithm, different thresholds ranging 
between 0.001 to 1 % of the total power were applied. 
It was observed that the partitions have consistent 
boundaries approximately every 60 Hz. To unify the 
number of the partitions for all signals we also 
performed a uniform partitioning and divided the power 
spectrum to 5 partitions, each of which contains 20 % 
of the total power. This was done as an alternative to 
using a fixed threshold, where a different number of 
partitions might be obtained within a set of 10 MESs. 

TABLE I: MYOELECTRIC SIGNAL SIMULATION PARAMETERS 
Source Duration 3 msec 

Conduction Velocity 3 and 5.5 m/s 
Num. of Fibers in MU 40 

Innervation Zone to Electrode 
Distance 35 mm 

Length of Fiber 210 mm 
Termination Dispersion 1 mm 

Innervation Zone Dispersion 1 mm 
Depth of MU (deviation) 25 or 35 mm (σ = 2.5 mm) 

Num. of MU 50 
Firing Rate (deviation) 20 Hz  (σ = 3 Hz) 

Sampling Rate 20 kHz 

 
4. RESULTS AND DISCUSSION 

 
Fig.(1) shows the power spectrum and the obtained 
piecewise model by the new partitioning algorithm 
when CV = 3 m/s. Table II summarizes all the 
experimental results. Experimental results, particularly 
the modeling error, show a significant improvement 
when using the new algorithm. The new partitioning 
algorithm is also very flexible for using different 
frequency ranges. 

Skewness or compression, results in a degraded 
self-affinity of the signal; therefore, estimated 
parameters using one single model becomes highly 
erroneous, residing at the higher edges of the error 
convex. In such cases, the parameters describe the 
dominant complexity, which is not accurately related to 
the texture of neither the compressed or regular 
regions. Restricting the adaptation to partitions, results 
in a better accuracy where single level dominant 
complexity indicators of the power law are insufficient 
for characterizing the whole power spectrum behavior 
(multi-complexity). This implies multi-fractal 
characteristics. In other words the whole power 
spectrum is representing more than one textural 
characteristic and different frequency ranges might 
possess specific coarseness qualities associated with 

them. This novel partition algorithm minimizes the 
limitations for expressing a power spectrum in form of 
mono-fractals by reducing the frequency range in 
which the power law must be valid. Local 
characteristics can now be represented with dominant 
complexity indicators with negligible error rates. 

TABLE II: MODELING MEAN ERROR AND STANDARD 
DEVIATION 

 Piecewise Power Laws Single Power Law 

Low CV (3 m/s) 0.6 % (σ = 0.1 %) 15 % (σ = 5.0 %) 

High depth (35 mm) 0.7 % (σ = 0.1 %) 16 % (σ = 5.3 %) 
CV = 5.5 m/s  and
MU depth = 25 mm 0.4 % (σ = 0.1 %) 9.1 % (σ = 3.1 %) 

 
5. CONCLUSIONS AND FUTURE DIRECTIONS 

 
A novel partitioning algorithm for piecewise modeling 
using general self–affine power laws has been 
introduced. We showed an application of this algorithm 
for MES and demonstrate the improved modeling 
accuracy for low CV and high depth of active MUs, 
which causes compression and/or skewness in the 
power spectrum curvature. 

These results are promising a very solid ground for 
bio-fractal signal processing with their ability in 
accurately representing complicated power spectrums 
in form of statistical self-affinity. We are currently 
experimenting with this algorithm on speech and 
electroencephalography signals. As well, we are 
continuing our research on MESs, aimed for fatigue 
and joint angle studies. 
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