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Abstract In this paper we propose a novel methodology for 
structure-function-based multi-fractal analysis of myoelectric signals. 
This methodology provides multi-scale information about the 
geometry of the myoelectric interference pattern. Specifically, it 
provides insight into the fractal characteristics of sampled 
myoelectric signals with assessment of long-range dependencies 
and fractal-scaling-break properties of this signal. Power spectrum 
and structure-function-based methods are also integrated in this 
work, presenting a unified framework for multi-scale analysis of 
myoelectric signals. Results of an experiment for comparison of 
myoelectric signals to strict mathematical fractional Brownian motion 
are provided. The novel methodology provides insight into the 
myoelectric signal’s renewal process. The results also show a great 
potential for applications to clinical diagnosis and fatigue studies.  
 

I. INTRODUCTION 
 

The surface myoelectric signal (MES) can be 
readily measured but the complex nature of this signal 
(i.e. sensitivity to recording conditions and non-
stationary), challenges extracting precise 
characterizing information. 

Previously, random fractal theory for analysis of 
MES power spectrum as a mono-fractal, in [1, 2], in the 
form of strict self-affinity and in [3, 4, 5], in the form of 
multi-scale self-affine power-laws has shown unique 
properties, which could be used for better 
understanding myoelectric dynamics and to 
complement conventional measures [3, 4, 5]. 

Power spectrum-based methods are very 
informative in terms of understanding the statistical 
nature of the myoelectric dynamics; however, these 
methods require a spectral representation. Non-
parametric power spectrum estimation has associated 
difficulties with temporal resolution and phase 
information of the time series. Moreover, it is not 
possible to comment on multi-fractality of a signal 
solely based on the power spectrum; the power 
spectrum-based methods provide a measure of 
dominant complexity [5]. 

This motivates computing a fractal indicator (FI) in 
the spirit of a power-law scaling exponent by exploiting 
the actual time series, similar to structure-function-
based analysis [6], to enhance the power spectrum-
based FIs. 

The conventional structure-function-based analysis 
is limited for the noise types; the bounded amplitude of 
a noise type does not exhibit a power-law scaling 

regime and the estimated power-law scaling exponent 
is saturated around zero [6]. We propose a novel 
methodology in which this difficulty of conventional 
methods is resolved and that is applicable to MESs. A 
discussion for integration of multi-scale power-law 
power spectrum method to this methodology is also 
presented for further insight into the multi-scale 
analysis of MESs. The methodology is evaluated with 
simulated fractional Brownian motion and experimental 
MESs to study the renewal process and fractal 
characteristics of these noise types. 
 

II. METHODS 
 
A. Long memory and fractal analysis: 
 
1. Power spectrum method: 
 

Assume we are given a random process { Xi, i = 
1,2,...,N }, which denotes a finite sampled temporal 
signal, that has a 1/fα power distribution. Treating the 
signal as a mono-fractal, the power spectrum might 
show persistent or anti-persistent characteristics; that 
is the slope of the 1/fα power-law is extended from a 
memory-less series with no range dependencies (i.e. 
anti-persistent) to a long-range dependent process with 
a highly persistent distribution. This type of analysis is 
well suited for exact processes which show a 1/fα 

power distribution in its strict mathematical sense, 
similar to fractional Brownian motion. This notion could 
be extended to a wider class of self-affinity with 
multiple scales for different frequency ranges. Multi-
scale power-laws outperform simple single-scale self-
affine routine when applied to MESs. Interested 
readers are referred to [5] for a complete discussion on 
power spectrum-based MES analysis. 
 
2. Structure-function method: 
 

The autocorrelation of the random process X could 
also be used for assessment of range dependency and 
memory of a fractal time series with 1/fα power-law. 
Consider a correlation measure from two non-
overlapping segments of the random process X in this 
form,  
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In Eq.(1), Z(q)(m) is a time averaged autocorrelation 
taken from all possible pairs of { X(i+m),X(i) }. It is 
examined whether there exists a power-law scaling 
between ξ(q) and Z(q)(m) for different values of the 
scaling factor q. This approach allows focusing on 
different aspects of the signal using different q 
denoting small and large emphasize of absolute 
increments of the random process. Consider the 
approximating power-law in this form, 

( ) ( ) qqqH ζ=  (2) 
where H(q) is an a power-law scaling exponent similar 
to Hurst exponent. Eq.(1) could be re-written in this 
form, 
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When H(q) is a constant function of q (i.e. F(q)(m) has a 
constant slope on a log-log scale), the process is a 
mono-fractals; otherwise, the process has multi-fractal 
characteristics. This methodology is similar to 
fluctuation analysis for q = 2 [6]. 
 
B. A novel random walk-based analysis: 

 
For noise types the structure-function method might 

result in erroneous and saturated results. This could be 
explained by the bounded fluctuations of a temporal 
noise type; that is, larger number of samples in such 
time series will not necessarily result into larger 
fluctuations [9]. 

A solution to this limitation is constructing a 
temporal random walk by integrating the signal in this 
form, 
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In Eq.(3), Y is a random walk, based on the random 
process X (after removal of mean). The random walk is 
expected to show a stronger correlation persistency; 
therefore, its fractal properties could be more 
accurately characterized. 

After integration of X, Y is expected to show 
increased amplitude with evolution of time. This is a 
result of increased fluctuations with evolution of time 
and suggests that even due the mean value of all the 
samples is zero different sample ranges might possess 
non-zero averages (similar to non-zero mean of a sine 
wave in its half periods). If this characteristic is not 
well-satisfied it suggests that the time series is pseudo-
stationary; that is, arbitrary successive samples are 
likely to have a zero mean. In this case we propose 
random walk integration with more emphasis on the 
spikes of the random process X (after removal of 
mean) in this form, 
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In Eq.(3), YP is a random walk, based on the 
random process X. The mean value of all sample 
ranges will be nonzero, as we are concerning 
ourselves with the absolute values; the parameter P 
controls the amount of magnification on the peak 
values and spikes in the time series. In this paper, P = 
2 was used. 
 
E. Experiment: 
 

Through comparison of MESs to fractional 
Brownian motion we seek to address two issues: 1) 
whether MESs are exhibiting pseudo-stationary 
dynamics or the renewal process is stationary; and 2) 
whether these dynamics are mono- or multi-fractal. 
MESs used in this experiment are a subset of 5 
subjects from the dataset used in [7]; MES were 
collected from the right biceps under static conditions. 

The fractional Brownian motion was simulated by 
fractional filtering of the white noise’s FFT [6], with a 
fractional order of 0.5 (anti-persistent). All data, 
sampled at 1024 Hz, were divided into 5 sec 
segments. 

The structure-function method is applied to all data 
in the form of Eq.(3). The conventional integration of 
Eq.(4) is also compared to the proposed approach in 
Eq.(5). 
 

III. RESULTS AND DISCUSSIONS 
 
A. Simulated fractional Brownian motion: 
 

Figure 1 shows the results of applying Eq.(3) to a 
typical simulated fractional Brownian motion. The zero 
slope value is not valid because it is does not agree 
with the known fractional filter order which is 0.5. This 
is consistent with the bounded amplitude of the 
simulated data and limitation of structure-function-
based analysis for noise-types. Figure 2 shows the 
results after integration according to Eq.(4). The 
random walk representation resembles a clear linear 
power-law scaling regime (i.e. high degree of 
fractality). A least squares linear regression could be 
used for accurately estimating the power-law scaling 
exponent (i.e. linear slope). The slope for higher orders 
is very close to 0.5 (i.e. negligible changes) implying 
multi-fractality of the time series is not very strong 
which is consistent with mono-fractal characteristics of 
the simulated data. The average estimated linear for 5 
sets of simulated data was H = 0.49 with a negligible 
standard deviation of σ = 0.01 for q = 2. Using the 
novel integration procedure similar results is obtained; 



the mirroring of negative values does not affect the 
power-law scaling regime. 
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q = 2    Linear regression q = 7 q = 12 q = 17 q = 22 q = 27

Slope ~ 0.0

 
Figure 1: Analysis of simulated fractional Brownian motion before 

random walk integration. The slope is not informative. 
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Figure 2: Analysis of simulated fractional Brownian motion after 

random walk integration. The slope accurately characterizes the time 
series. 

 
B. Myoelectric signals: 
 

Figure 3 shows the results of applying Eq.(3) to a 
typical sample of MES. Figure 4 shows the results after 
integration according to Eq.(4). The linear slope could 
not be used for accurately estimating the power-law 
scaling exponent as it is still saturated around zero. 
This suggests that the increments of MESs are not 
stationary like fractional Brownian motion; pseudo-
stationary properties results into saturation of the linear 
slope around zero. Figure 5 shows the results after 
applying the novel random walk construction 
methodology of Eq.(5). Mirroring the negative values in 
space (i.e. taking the absolute values) and 
emphasizing the spikes masks pseudo-stationary 
related difficulties. Figure 5 resembles a power-law 
scaling regime which is very much linear for lower 
orders. Figure 5 suggest multi-fractal characteristics at 
short-range scales because the linear slope is 
significantly varying with different orders. This could be 

explained by the fact that for small time scales, there is 
a stronger dependency between successive random 
walk samples and multi-fractality hints properties 
beyond a simple mono-fractal randomness 
characteristic as seen in simulated fractional Brownian 
motion; this also suggest that a single power-law 
scaling regime denoting a dominant complexity fractal 
dimension is not adequate for characterizing the signal. 
For larger time scales an average statistics is 
quantified which resemble a mono-fractal random 
process similar to simulated fractional Brownian 
motion. Meanwhile, it is probable that random like 
recruitment strategies are resulting into an anti-
persistent mono-fractal with a linear slope close to 0.5. 
The average estimated linear slope for 5 sets of 
recorded data was H = 0.46 with a negligible standard 
deviation of σ = 0.05 for q = 2. 

3 4 5 6 7 8 9 10 11
2.5

3

3.5

4

4.5

5

5.5

log2[m]

lo
g2

[F
(m

)]

 

 

q = 2    Linear regression q = 7 q = 12 q = 17 q = 22 q = 27

Slope ~ 0.0

 
Figure 3: Analysis of MES before random walk integration. The slope 
is not very informative. This segment of the signal has been collected 

from the first 5 sec of data of subject 1 during a static contraction. 
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Slope ~ 0.05

 
Figure 4: Analysis of MES after random walk integration. The slope 

is not very informative. This segment of the signal has been collected 
from the first 5 sec of data of subject 1 during a static contraction. 

 
C. Comparison with power spectrum method: 
 

The MES power spectrum is not well-defined by 
strict self-affinity, but it could be accurately 



approximated by a multi-scale power-law [4, 5]. A 
multi-scale power-law provides two FIs and a fractal-
scaling-break at which each FI is asymptotically 
independent from the other. The general power 
spectrum method presented in [5] represents a mono-
fractal with one fractal-scaling-break. This is consistent 
with Figure 5 in which the MES is showing mono-
fractality after a fractal-scaling-break. The novel 
structure-function methodology provides a unique 
representation for MESs through which multi-fractal 
characteristics could be also taken into account to 
complement the power spectrum-based FIs. 
 

III. CONCLUSIONS 
 

Results of this work demonstrate that MES exhibit: 
1) pseudo-stationary dynamics and conventional 
random walk analysis is not applicable; and 2) that 
these dynamics are both mono- and multi-fractal and 
the nature of combination depends on a fractal scaling 
break similar to multi-scale power spectrum method 
[5]. Pseudo-stationary properties of MESs do not allow 
conventional structure-function-based analysis. A novel 
methodology for tackling this problem is proposed 
which resolves the difficulties of conventional random 
walk integration technique. This new methodology 
could be potentially used for estimation of fatigue and 
clinical diagnosis. Preliminary results of our research 
demonstrate potential for employing this methodology. 
Figure 6 shows an example in the presence of 
localized muscular fatigue during static contractions. 
With decreasing conduction velocity more time 
dependency and memory in the MES dynamics are 
seen as the single motor unit action potentials are 
longer and extended to more samples. The slope 
represents a persistent time series and implies a 
greater synchrony among the motor units which is 
reflected in the form of long-range dependency. 
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Figure 5: Analysis of MES after random walk integration using novel 

methodology. The slope accurately characterizes the time series. 
This segment of the signal has been collected from the first 5 sec of 

data of subject 1 during a static contraction (MDN ~ 123 Hz). 
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Figure 6: This segment of the signal has been collected 500 sec after 

the start of static contraction from subject 1(MDN ~ 43 Hz). After 
random walk integration samples exhibit a high degree of mono-

fractality which is also highly persistence (slope = 0.8) compared to 
non-fatigued case (slope = 0.5). 
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