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INTRODUCTION  

The main difficulties of grid-based numerical 
methods come from the use of mesh. The descritized 
equations in grid-based numerical methods are based 
on the generation or regeneration of meshes that can 
be a time-consuming and costly work. 

Smoothed Particle Hydrodynamics (SPH) is a 
meshfree particle method (fully Lagrangian method), 
originated to model astrophysical phenomena [1, 2], 
and later developed for applications in continuum solid 
and fluid mechanics. In SPH method the fluid field is 
divided to a set of discrete fluid elements (particles). 
These particles have a spatial distance, over which 
their properties are "smoothed" by a weighting 
function. This means that any physical quantity of a 
particle can be calculated by summing the relevant 
properties of all the particles within its support domain.  

The earliest applications of SPH in fluid dynamic 
field were in the compressible fluid dynamics area. 
However, in SPH method incompressible flows can be 
treated as an inconsiderable compressible flow using 
an artificial equation of state [3]. SPH method has very 
wide applications from micro-scale to astronomical 
scale continuum phenomena. Furthermore, SPH 
method is very suitable for problems with complex 
deformable boundaries. These kinds of problems are 
usually encountered in the human body and more 
specifically in the cardiovascular system. 

The present work is, therefore, a first attempt to 
simulate the unsteady filling phase (diastolic phase) in 
a 2D simplified model of a left ventricle using SPH 
method. 

THE SPH METHOD 

The main characteristic of the SPH method is 
based on integral interpolants [4]. In this method, the 
fundamental principle is to approximate any function 

)r(A
r

 by, 

 rd )h,rr(W )r(A)r(A
rrrrr
′∫ ′−′=                (1) 

where h is called the influence or smoothing length 
and )h,rr(W
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′−  is the weighting function or kernel. It 

should be normalized, and show a behavior like delta 
function as the smoothing length approaches to zero, 
and have continuous first and second derivatives.  

In numerical works this approximation leads to the 
following approximation for any function at an 
interpolation point “a”, 
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The summation is over all the particles within the 
region of compact support of the kernel function. mb  
and ρb   are  mass  and  density  of  particle  “b”  in  the 
compact support area of particle “a”. 

The gradient of a function for particle “a” can be 
obtained from its values at neighboring, 
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In this way, the Navier–Stokes equations can be 
presented in the form of SPH formulation. 

Weighting function (kernel) 

The correct selection of the weighting function has 
an important effect on the performance of SPH 
modeling. Different kinds of weighting functions are 
suggested in the literature. The function depends on 
the smoothing length, h, and the distance between 
particles “a” and “b”, rab. The smoothing length 
determines the size of support domain of particle “a”, 
where particles in it contribute to the approximation. 
Most of simulations in SPH employ the following cubic 
spline kernel [4]: 
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Continuity equation 

The continuity equation can be written under its 
SPH formulation as follows [4], 
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Momentum equation 

The momentum conservation equation for a fluid 
particle “a” in the field is, 
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where P∇
r

 is the pressure gradient and ν  refers to the 
kinematic viscosity of the fluid.  

Pressure gradient could be estimated by using,  
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Viscous stress term is presented in the literature in 
different ways [5]. We modeled this term as follows, 
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Flow pressure 

Incompressible flows in the SPH method are 
treated as weakly compressible, so it is easy to use an 
equation of state to determine fluid pressure [5],  

ρ= cP 2           (9) 

where c is the speed of sound. The speed of sound 
should be selected so that density varies with less 
than 1%.  

Moving the particles 

Particles are moving according to,  
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where r a
r  denotes the position of particle “a”. 

Boundary condition 

Boundary conditions in SPH method are treated in 
some specific ways. Indeed, when a particle goes near 
a rigid wall some important facts should be 
considered: particles near a wall do not have enough 
neighboring particles in their support domain, which 
leads to unrealistic results; the particles should not 
penetrate the rigid walls and a no-slip condition should 
be satisfied on the walls. Different ways to treat 
boundary conditions are presented in the literature to 
take into account these specific considerations [3, 5]. 

In this work the rigid wall boundaries are 
represented by some fixed wall particles. These 
particles have zero velocity. We treat wall particles at 
corners so that fluid particles do not feel a non-
continuous effect when approaching the corners. Two 
layers of imaginary particles are positioned outside the 
domain parallel to the wall boundaries. The velocity of 
these particles is set so that no-slip boundary condition 
is satisfied on the wall at each time step. The pressure 
at the wall and of the imaginary particles is calculated 
during the computation so that Neumann boundary 
condition is satisfied. Boundary condition at inlet and 
outlet of the domain should be considered so that the 
continuity is satisfied. 

 

Implementation 

Here a 2D simplified model of a left ventricle (LV) 
is used to simulate the diastolic phase. The physical 
geometry and initial distribution of the particles are 
shown in figure (1).  

 
 

Figure 1: Initial distribution of the particles in the 
domain. 

 

In the SPH method only particles within the 
compact support area of a particle are used in the 
approximation of physical properties. Finding the 
particles in the support domain of any particle “a” can 
be performed in different ways. The simplest way is to 
search the whole computation domain at each time 
step to check the distance between each particle and 
particle “a” and to determine if this particle belongs to 
the support domain of particle “a”. Here, we applied 
the idea of linked list method [6] to search the 
neighboring particles. In this method some imaginary 
cells with a dimension equal to the support domain 
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radius are constructed (Figure 2). Then for a particle in 
a cell only the interaction with the particles in the 
neighboring cells need to be considered. In this way, 
the computational time is significantly reduced.  

 
Figure 2: Application of the linked list method. 

In this work we compare the effect of applying 
linked list method instead of using simple neighboring 
particle search method on the average computation 
time for one time step. Table (1) shows the results with 
taking different number of particles. The program has 
been written in Fortran and runs on an Intel(r) Core 
(Tm) 2CPU 6300 @ 1.86 GHz computer.  

Table 1: Effect of applying linked list method on 
computation time. 

Computation Time per Time Step 
Case Number of Particles Simple Particle 

Search Method 
Linked List 

Method 

1  Fluid Particles: 1130 
 Wall Particles: 140 3 second 0.15 second 

2  Fluid Particles: 1633 
 Wall Particles: 166 6 second 0.25 second 

3  Fluid Particles: 2915 
 Wall Particles: 218 18 second 0.45 second 

4  Fluid Particles: 3694 
 Wall Particles: 244 35 second 0.6 second  

The mitral valve inlet velocity is simulated using a 
flat velocity profile following an unsteady parabolic 
variation (Figure (3)). Such profile is usually uncounted 
in patients with atrial fibrillation.  

   

 

Figure 3: Variation in time of the inlet velocity profile.  

The blood flow density and viscosity are set to 
1000 kg/m3 and 3.6× 10-3 Pa.s.  

RESULTS AND DISCUSSION 

The simulated velocity field considering 3694 fluid 
particles with a time step of 1× 10-5 (s) for four different 
instants during the cycle are shown in figures (4a-d). 

 

 
Figure 4a: Velocity field at t=0.1 s. 

 

 
Figure 4b: Velocity field at t=0.3 s. 

 
Figure 4c: Velocity field at t=0.58 s. 
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Figure 4d: Velocity field at t=0.6 s. 

During the acceleration phase, since in our model 
the aortic valve is in open position, the flow exiting the 
mitral valve is immediately directed towards the aortic 
valve (t=0.1 s). At the peak of the filling phase (t=0.3 s) 
no significant modification in the flow field can be 
noticed, except that the jet penetrates more deeply in 
the cavity (simulating a left ventricle), this can also be 
noticed on figure (5a-b) showing the spacio-temporal 
variations in the X and Y components of the velocity. 

 

 
Figure 5a: X- component of the velocity at section 

y=0.04 m for different instants during the cycle. 

During the deceleration phase, as a result of jet 
breakdown phenomena, a coherent structure appears 
in the space between the inlet (mitral valve) and the 
outlet (aortic valve); this coherent structure is then 
convected towards the centre of the cavity. Although, 
the simulated conditions are not physiologically 

correct, the characteristic of the flow, a main vortex 
structure in the cavity, obtained using SPH method are 
very close to the one observed in a left ventricle during 
the filling phase [7]. 

 

 
Figure 5b: Y- component of the velocity at section 

y=0.04 m for different instants during the cycle. 

As a conclusion, this work is a first attempt to 
simulate the filling phase in a realistic left ventricle. To 
reach physiological conditions, several improvements 
are still needed, such as using a realistic geometry 
and taking into account myocardial deformation and 
the opening and closure of the valves. 
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