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INTRODUCTION 

Joint stiffness defines the dynamic relationship 
between the position of a joint and the torque acting 
about it. Joint stiffness consists of two components:  

1. Intrinsic stiffness, which arises due to the 
viscoelastic properties of the muscle, joint, 
and connective tissue as well as the inertia of 
the limb. 

2. Reflex stiffness, which arises due to active 
muscle contractions in response to afferent 
feedback from muscle stretch receptors [1]. 

This two component view of joint stiffness is 
applicable under many contexts, however, it may be 
inappropriate during certain tasks. When people are 
instructed to maintain a joint or a limb at a certain 
position, they create torques voluntarily which are 
correlated to the position of joint. Hence during these 
tasks we must consider a voluntary contribution to the 
total joint stiffness. This voluntary contribution can 
arise from proprioceptive feedback as well as visual 
feedback. 

Joint stiffness is especially important in the ankle 
because not only is involved in voluntary movements, 
it also plays a large role in the maintenance of upright 
stance. In upright stance there are as many as five 
mechanisms—intrinsic, reflex, visual, proprioceptive 
and vestibular—helping maintain the body upright. A 
number of studies have modeled joint stiffness in 
upright stance.  They modeled it as simply a 
proportional gain, a derivative gain and a delay [2, 3]. 
However, they did not try to model each component 
separately, nor did they have any dynamics in the 
model beyond a simple delay. Other studies have 
measured the contributions of the different mechanism 
to upright stance [4, 5]. It has been shown that velocity 
is most accurate visual information [5], however, 
neither study tried to quantitatively measure each 
component’s contribution; rather they measured the 
resulting change in body sway. 

In the following paper we will describe the 
procedure and the results of our attempts to 
quantitatively characterize the visual contributions to 
joint stiffness. To accomplish this we removed all other 

components of joint stiffness. By performing the 
experiments with the subject lying down we removed 
any vestibular feedback. Furthermore we fixed the foot 
at a constant position which removed all intrinsic, 
reflex and proprioceptive contributions. We provided 
subjects with only visual feedback and measured the 
torque in response to the changes in the visual 
feedback. We then estimated an impulse response 
function (IRF) between the visual feedback and the 
torque. We found that the torque subjects produced 
was correlated to the velocity of the visual stimulus 
through a delay and a low-pass filter. 

METHODS 

Subjects 

Two males and one female between the ages of 
22-41 participated in the study. None of the subjects 
had any history of neuromuscular disorders. All 
subjects gave informed consent to participate in the 
study, which was approved by the McGill University 
Research Ethics Board. 

Apparatus 

A schematic of the apparatus is shown in Figure 1. 
Subjects lay supine with their left foot attached to an 
electrohydraulic actuator through a fiberglass boot. 
The actuator is set to a very high stiffness, preventing 
any movement of the foot. The left leg was 
immobilized with a leather strap and was supported 
with sand bags under the knee. The toe section of the 
boot was cut out preventing any contributions from the 
toe muscles. Ankle position, torque, visual feedback 
and EMG activity from the lateral gastrocnemius, 
medial gastrocnemius, soleus and tibialis anterior were 
sampled at 1 kHz and stored.  

Procedure 

Subjects were provided visual feedback, on an 
overhead LCD monitor, of a simulated signal which 
was computed using an inverted pendulum model 
shown in Figure 2. This model was designed to 
simulate human stance, where the command signal is 
the desired body position and the error signal is the 
difference between the desired and actual body 



position. The visual system will detect this error, and 
cause the ankle muscles to create a torque which will 
drive the body back to its desired position. The body 
was simulated as an inertial load (A1/s

2
) and mass 

being pulled down by gravity (A2sin). 

To remove contributions from intrinsic, reflex or 
other proprioceptive mechanism, the ankle was held at 
a fixed position by the actuator. The gain A1 differed 
from trial to trial, while the gain A2 was set to zero to 
make the task as easy as possible for the subjects to 
complete. 

Each subject participated in one session lasting 
between 1 and 2 hours. Subjects were shown the error 
signal on the overhead monitor and were instructed to 
minimize the error signal. Two types of trials were run: 
random perturbation and ramp trials. In the random 
perturbation trials, the command signal was a normally 
distributed random variable with a sampling interval of 
5 s. In the ramp trials, the command signal consisted 
of ramps of constant amplitudes but different 
velocities. The ramps alternated direction and 
repeated every 5 seconds. 

Data Analysis 

For the random perturbation trials, the data were 
filtered with an 8

th
 order type I Chebyshev lowpass 

filter with a cutoff of 8 Hz and then decimated to 20 Hz. 
IRFs were calculated between the command signal, 
error signal, error velocity,  torque, and EMGs. Step 

responses were estimated by integrating the estimated 
IRFs.  For the ramp trials, the error signal, velocity, 
torque and EMGs were filtered with an 8

th
 order Bessel 

filter with a cutoff of 10 Hz, aligned on the start of the 
ramp and then ensemble averaged. 

IRFs between the velocity and the torque were fit 
to a 2

nd
 order low-pass filter with a delay. The filter was 

defined in the Laplace domain (s) as  

 (1) 

where G is the gain, z is the damping ratio,  is the 

natural frequency and  is the delay. Fitting was done 
using Matlab’s non-linear least-squares parameter 
estimate which uses the Gauss-Newton algorithm with 
Levenberg-Marquardt modifications for global 
convergence. 

The quality of the estimated IRFs as well as the 
fits, were measured by finding the percentage of 
variance accounted for (%VAF)  

 (2) 

For the %VAF of IRFs  is the output and  is the 
predicted output estimated by convolving the input with 
the estimated IRF. For the fits,  is the non-parametric 
IRF, while  is the parametric fit. 

RESULTS 

Figure 3 shows the error signal, the error velocity 
and the torque in response to a step change in the 
command signal. The step change in the command 
signal caused a step change in the error signal and a 
spike in the velocity. Following a delay of a few 
hundred milliseconds, the subject produced a torque 
which brought the error back to near zero. The most 
intriguing aspect of the figure is that there was a large 
negative torque occurring at approximately 1.5 s 
following the step despite the fact that error signal was 

 
Figure 1. Schematic diagram of experimental apparatus. 

 

 
Figure 2. Schematic diagram of inverted pendulum model used 

to generate visual feedback. Subjects are shown the error signal 

on an overhead monitor. The error is calculated as the 
difference between the command signal and the 2

nd
 integral of 

the torque (Tq) multiplied by gain A1. 

 



never negative. Therefore this system must be more 
complex than just a gain and a delay. 

Velocity-Torque Correlation 

Figure 4 shows both the error velocity and the 
torque recorded during a ramp trial. It is immediately 
apparent from this figure that there was a strong 
correlation between the error velocity and the torque. 
We can see that the torque seems be a low-pass 
filtered version of the error velocity with a delay of a 
few hundred milliseconds. 

Using the data collected during the random 
perturbation trials we estimated an IRF between the 
error velocity and the torque (Fig. 5). While this IRF 
accounted for the majority of the torque (%VAF = 
60.4%), its coherence squared at frequencies below 

0.5 Hz is especially good (≈ 0.8). In addition to the 
estimated non-parametric IRF (solid line), Figure 5 
shows a parametric fit (dotted line). We can see that 
the non-parametric IRF is a good fit (%VAF = 98.3%) 
to a 2

nd
 order low-pass system with the following 

parameters G = 101 Nm/rad/s, z = .64,  = 3.0 rad/s 

and  = 0.3 s. 

Response Changed with Different Loads 

For one subject, we measured the torque 
response to the random perturbations under different 
simulated loads. The change in loads was simulated 
by changing the gain A1 in Figure 2. Figure 6 shows 
the estimated IRFs between the error velocity and the 
torque, while Table 1 shows the estimated parameters 
of the parametric fit. For all loads, the value of the 
delay was equal to 0.3 s. From Table 1 we can see 
that as the gain A1 decreased, which simulated an 
increased load, the gain of the torque response 

 
Figure 3. Error signal, error velocity and torque in response to a 

step change in the command signal. A step change in the 
command signal caused a step change in the error signal and a 

spike in the error velocity. Following a delay of a few hundred 
milliseconds, there was an increase in the torque which brought 

the error signal back to zero. 

 

Figure 4. Velocity (blue) and torque (red) recorded during ramp 
trials. It is apparent that the velocity and torque, recorded from 

Subject B during the ramp trials, are correlated through a delay 
and a low-pass filter. 

 

 
Figure 5. IRF (solid line) found between error velocity and torque 
with parametric fit (dotted line). The IRF found between the error 
velocity and torque, in Subject A, was a good fit (%VAF = 98.3 

%) to a 2
nd

 order low pass system with parameters G = 101 

Nm/rad/s, z = .64,  = 3.0 rad/s and  = 0.3 s. 

 
Figure 6. Response to the visual stimulus changed with 

changing simulated loads. Subject C increased the gain of his 
response to the visual stimulus when the simulated load was 

increased. The simulated load was increased by decreasing the 

feedback gain (Fig. 2 A1). Blue: A1 = .02; Green: A1 = .01; Red: 
A1 = .0067; Black: A1 = .005. 

 



increased. Though there was a general decrease in 
frequency with increasing load, the trend was not 
perfect. The amount of torque each IRF accounted for 
also increased with increasing load, but this is 
expected as the gain of the system increased. 

Table 1. Parameters estimated from the parametric fits for Subject C 
when the simulated load changed. A decreased value of the 

feedback gain (Fig. 2 A1) resulted in an increase in the simulated 

load. 

Feedback 
Gain (A1) 

Gain 

  

Damping  Frequency 
(rad/s) 

VAF 

of Fit 
(%) 

Tq 

VAF  
(%) 

0.02 56 0.42 4.1 91.3 40.2 

0.01 107 0.54 3.2 96.7 54.5 

0.0067 144 0.51 3.5 97.5 55.1 

0.005 167 0.50 2.6 98.8 63.2 

DISCUSSION 

Maintaining upright stance is essential for the daily 
lives of all people of all ages. There are as many as 
five mechanisms which help maintain upright stance: 
intrinsic, reflex, visual, proprioceptive and vestibular. 
Studies have shown that removing any single 
mechanism increases body sway [4, 5]. While intrinsic 
and reflex mechanisms have been thoroughly 
quantified [1, 6-8], the other mechanisms have not. A 
number of studies have measured the effect of visual 
information on sway, however, none have attempted to 
quantify the relationship between the visual 
information and the torque produced at the ankle. 

Using system identification techniques, we found a 
model which can predict the torque at the ankle in 
response to visual feedback. We found that there was 
strong a correlation between the velocity of the error 
signal and the torque, hence we estimated an IRF 
between these two signals. Though the %VAF of this 
model is average (60.4 %), the coherence is quite high 
at low frequencies. Using a non-linear least squares 
algorithm, we found that the estimated IRF fits a 2

nd
 

order low-pass system with a delay of 0.3 s extremely 
well (%VAF = 98.3 %). Finally, we found that when 
increasing the simulated load, the subject increased 
the gain of the response in a nearly linear manner.  

The first important finding of this study is that 
subjects can control an unstable load using only visual 
information. This is not too surprising, as people are 
able to control many objects using almost only visual 
information, such as playing video games and driving 
a car. What is surprising is that the response was 
correlated to the velocity of the visual feedback and 
not the amplitude of the visual feedback. While 
subjects were able to successfully perform this task, it 

may be too premature to say that humans can 
maintain balance only using visual feedback, as the 
model we have used in this study removed the 
gravitational effect of standing and used simulated 
loads which are smaller than the load of the body. 

A second important observation was the frequency 
of the response. Based on the parameter estimates 
from the parametric fit, the natural frequency of the 
response was approximate 3 rad/s or about 0.5 Hz. 
This estimate agrees with the coherence squared, 
which was high for frequencies below 0.5 Hz. This 
frequency is much lower than that of the ankle 
muscles (≈ 2-5 Hz [6]), therefore it must be the 
dynamics of the response to the visual stimulus. Thus, 
the visual response might be able to help maintain 
quiet stance and adjust to low frequency perturbations, 
but will be unable to contribute to balance when faced 
with high frequency perturbations. Nonetheless, the 
frequency response of the visual response is 
complimentary to the reflex response which has a high 
coherence between 5 and 10 Hz. 

Finally, the third interesting finding is that Subject 
C changed the gain of his response to the visual 
feedback. This demonstrated that subject tuned the 
parameters of his internal controller in order to perform 
the task in a more efficient manner. Furthermore, the 
subject was given less than one minute to adjust to the 
new load, hence the subject was able to perform this 
tuning very quickly. 
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