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ABSTRACT 

Providing an externally powered prosthetic 
solution for high-level upper extremity amputation 
cases requires several design factors to be considered 
by the clinical fitting team.  The sensors used must 
often be finely adjusted during the prosthesis 
fabrication in order to provide consistent repeatable 
control input signals.  The work presented in this paper 
introduces a mathematical framework capable of 
implementing robust residual shoulder motion driven 
control using only a short preliminary training protocol 
in an attempt to remove issues such as sensor type, 
alignment, and range of motion.  The algorithm 
determines the output amplitude values based on the 
real time residual shoulder position to reliably drive the 
prosthetic limb’s actuators.  This algorithm provides a 
new control input option for designing an externally 
powered prosthetic solution for high-level amputation 
cases. 

INTRODUCTION 

Previous research has shown residual shoulder 
motion to be a useful input source for various 
prosthetic control strategies [1-3].  Its importance is 
often amplified for high-level amputation cases where 
the availability of robust input control sources is often 
limited.  The most common use of residual motion is to 
drive cable-operated joints.  This body-powered 
method has been in use for several decades and is the 
most clinically available option at this point in time.  
Externally powered systems do exist which can use 
sensors, such as force sensing resistors, joysticks, 
and rocker switches that are activated by the user’s 
residual shoulder motion.  Single or dual site 
myoelectric signal originating from the residual limb 
and shoulder complex can also be used as a switch or 
to drive a specific actuator [4,5]. 

The selection of sensors and the control scheme 
by the clinical team will heavily depend on the 
consideration of several design factors (patient’s 
musculature condition, range of motion, learning 
ability, etc) in order to obtain an appropriate prosthetic 
rehabilitation plan [6].  Other design issues such as 
sensor orientation and output range also requires 

some consideration prior to the fabrication of the 
prosthesis.  Some level of final adjustments and 
modifications are often required with any devised 
solution.  Ideally, it would be beneficial to have an 
initialization protocol by which some of these factors 
would be taken into consideration and their associated 
implementation complexity removed from the 
prosthetic rehabilitation design stages.  Automatic 
tailoring of the system for factors such as the user’s 
range of motion, the sensor type, positioning and 
output range would also speed up the setup time 
required within a clinical and/or system retraining 
setting.  The algorithm presented addresses such 
issues by adapting the actuator output calculations 
based upon data collected during a short training 
session once the prosthesis has been fabricated. 

METHODOLOGY 

The fundamental basis of the algorithm consists of 
three stages:  1) creating class specific vectors based 
on training data, 2) determining the projected interim 
class values by relating a real time input signals based 
vector to these class vectors, and 3) calculating the 
class outputs using these values along with algorithm 
parameters.  The first stage is performed automatically 
immediately following the training session while the 
latter two stages are executed in real time. 

Training Protocol 

Users are instructed to complete five shoulder 
motions: elevation, protraction, depression, retraction, 
and a no movement/rest class.  Each motion is held 
for one second and the entire set is repeated five 
times.  The data collected during the training session 
provides the information necessary to determine the 
average position for each class, termed class 
centroids, within the input signal space. These 
centroids are treated as localized vectors (Figure 1) to 
produce the class specific vectors (Figure 2). These 
class vectors are created using the rest class as the 
origin where X ∈ {Elevation, Protraction, Depression, 
Retraction} denotes one of the four vector classes: 
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Figure 1: Class Centroids and Vector Diagram Within 
Input Space 

Having created the class vectors with the training 
data, it is now possible to calculate the magnitude 
component for each class vector along with the angle 
between two adjacent vectors: 
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Input Signal Projection onto Class Vectors 

The second stage of the algorithm requires the 
use of the current sensor signal values in order to 
create one final vector, termed input vector, using 
equation (1).  Similarly, its magnitude and the angles 
between it and the adjacent class vectors can also be 
calculated using equations (2) and (3) respectively. 

The algorithm requires that the newly computed 
input vector magnitude be normalized using each 
class vector’s magnitude to compensate for the user’s 
residual range of motion for each class: 
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The projected value, dX, then represents the 
normalized input vector magnitude for each of the four 
principal classes. 

 
Figure 2: Complete Class Specific Vector Diagram for 

the Vector Projection Algorithm 

Class Strength Outputs and Tuning Parameters 

The final stage of the algorithm uses the 
previously calculated values along with two tunable 
parameters (TF and SF) to determine the four class 
strength outputs: 
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The magnitude coefficient, α , represents the 
adjusted input signal’s projected value, dX, based on 
the threshold factor, TF. This coefficient is required to 
provide a ‘deadzone’ area for the Rest class (Figure 
3).  This area ensures that no class outputs are active 
within the desired zone.  It should also be noted that 
current implementation of the magnitude coefficient 
ensures that no discontinuities will occur when 
crossing the boundary between the rest and ‘active’ 
regions. 

The offset coefficient, δ , reduces the effective 
output strength of a given class as the angle between 
the input signal and class vectors increases.  The 
spread factor, SF, dictates how quickly the value will 
diminish as the angle increases. 



 

 
Figure 3: Illustration of Threshold Factor based 
deadzone for the Vector Projection Algorithm 

 

ALGORITHM EVALUATION 

Three separate case studies were investigated in 
a preliminary attempt to evaluate the effectiveness, 
reliability and versatility of the vector projection 
algorithm.  The first two cases used a two axis joystick 
as the input signal source (Figure 4) while the third 
case study used two linear transducers mounted on an 
experimental bypass socket (Figure 5). 

The first study consisted of orienting the joystick 
such that one of its axes was vertical while the other 
horizontal.  The subject performed the training protocol 
previously described in this paper and then proceeded 
to qualitatively assess the algorithm performance 
using class output feedback displayed in a Matlab 
graphical user interface (Figure 6).  A similar setup 
was used for the second study with the exception of 
the joystick being rotated by 45 degrees.  The final 
case study differed since the input signals originated 
from two linear transducers rather than a joystick. 

  

 
Figure 4: Experimental Joystick Apparatus used for the 

Evaluation of the Vector Projection Algorithm 
 

 
Figure 5: Experimental Bypass Socket with Linear 
Transducer Inputs used for the Evaluation of the 

Vector Projection Algorithm 
 

 

The subject was additionally asked to remove and 
re-don his bypass shoulder socket during the course of 
the experiment.  The algorithm was reassessed 
without any retraining once the socket was reattached.  

DISCUSSION 

The algorithm appeared to perform robustly in all 
cases evaluated.  The users reported no non-elicited 
class activation during the course of the experiment.  
Additionally, users enjoyed the ability to have dual 
activation of adjacent classes.  This effect could be 
amplified or reduced by tuning the spread factor, SF. It 
was also observed that both tuning parameters can be 
easily and intuitively adjusted by the clinical team, 
following the training session, to tailor the system to 
the user’s preferences.  

 

 
Figure 6: Matlab Graphical User Interface Feedback 

Diagram 



CONCLUSION 

A mathematical framework has been devised and 
experimentally implemented to provide a robust 
residual shoulder motion based control option for a 
high-level externally powered prosthesis.  This 
algorithm removes several complexities of prosthetic 
fitting by using a short preliminary training session to 
tailor the system to both the prosthesis setup and user.  
The preliminary case studies presented have 
demonstrated that robust proportional class outputs 
can be achieved using this algorithm for different 
prosthetic design scenarios. 

Further quantitative research is currently ongoing 
to evaluate the usability of this algorithm when 
combined with an endpoint control strategy.  
Ultimately, the usefulness of this scheme must be 
assessed with an actual prosthetic fitting to properly 
evaluate its ability to intuitively and reliably enhance 
the prosthetic user’s ability to perform tasks of active 
daily living.  Work is currently ongoing in conjunction 
with the clinical fitting team at the Institute of 
Biomedical Engineering at the University of New 
Brunswick to achieve this goal. 
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