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ABSTRACT 

 
Recent investigations into the use of real-time, 

pattern recognition based myoelectric control systems 
have shown excellent results in terms of classification 
accuracy and limb controllability under clinical 
supervision.  Longer term, continuous use appears to 
be subject to deterioration in classification accuracy 
and usability due to factors including electrode 
displacement, electrode/skin interface impedance, and 
user variability.  In this work, a simple filtering strategy 
for improved robustness to external noise is 
introduced.  Recorded signals are digitally filtered to 
remove noise vulnerable frequencies while retaining 
discriminatory myoelectric information for 
classification.   
 

INTRODUCTION 
 

The surface myoelectric signal (MES) is an 
electrophysiological signal generated by muscular 
contractions which propagates along the length of 
skeletal muscle to detection points on the skin’s 
surface.  The MES measured from an amputee’s 
residual limb can be used to determine the user’s 
intent and act as a source of control information for 
powered prosthetic devices.  Conventional control 
strategies usually map an amplitude estimate of the 
MES detected over independent control sites to 
degrees of freedom (DOF) of the prosthesis.  This type 
of control system is limited by the number of 
appropriate independent control sites available [1].     

Information extracted from signal patterns 
detected across multiple MES channels can also be 
used for control purposes [2].  Successful myoelectric 
pattern classification requires the user to make 
repeatable muscle contractions for each motion that is 
replaced.  Recent investigations into the use of real-
time, pattern recognition based myoelectric control 
systems have shown excellent short-term results 
under clinical supervision.  Users are able to attain 
high classification accuracy and limb control when the 
system is trained and tested within a given session.  
Long term, continuous use appears to be subject to 
deterioration in classification accuracy and usability 
due to factors including electrode displacement, 
electrode/skin interface impedance, and user 
variability.  While clinical measures can be taken to 

minimize some of these effects [3-4], a robust 
classification system is imperative.       

This work consists of two experiments to 
investigate the classification accuracy of pattern 
recognition based myoelectric control in the presence 
of substantial power-line interference.  In the first 
experiment, signals were collected in a low noise 
environment from normally limbed subjects.  The 
signals were then artificially corrupted with 60 Hz, 120 
Hz, and 180 Hz interference frequencies prior to 
classification.  In the second experiment, data were 
collected from one amputee subject in a clinical setting 
which contained a large amount of power-line 
interference.  It should be noted that these noisy data 
were not corrupted by intention, but rather, discovered 
after a testing session. 

  
METHODOLOGY 

 
Experimental 1 Protocol 

MES data corresponding to eleven motion 
classes were collected from 10 normally-limbed 
subjects, in an experiment approved by the University 
of New Brunswick’s Research Ethics Board.   

Ten adhesive Duotrodes were placed on the 
proximal portion of the forearm as illustrated in Figure 
2.      

 

 
Figure 1:  Cross-section of the upper-forearm showing 
electrode locations. 
 
Twelve locations were marked at circumferentially 
equal lengths on the forearm, around the apex of the 



muscle bulge. The Duotrodes were placed at 10 of 
these markings, excluding the medial and lateral 
marking.   

Experimental data were collected from subjects 
for 8 trials.  Each trial consisted of 2 repetitions of the 
following 11 types of motion classes performed in 
sequential order: wrist pronation/supination, wrist 
flexion/extension, hand open, key grip, chuck grip, 
power grip, fine pinch grip, tool grip, and a rest class.  
The rest position was defined as one of the motion 
classes in this work, and the rest position for intact 
limbed subjects was 0 degrees flexion, with the palm 
of the hand perpendicular to the floor.  The subject’s 
elbow was allowed to rest on an armrest.  The subjects 
were not restrained in any way during data collection 
and were given instructions to elicit repeatable, 
medium, constant force contractions to the best of their 
ability.  Prior to data collection, subjects were allowed 
to practice making contractions for approximately 10 
minutes.  During this time, the MES was examined by 
the experimenter to ensure that good electrode/skin 
contact was maintained for all motions and that the 
gains of the amplifiers were appropriately set to avoid 
saturation.  During all trials, subjects elicited the 
contraction from the rest position, held the contraction 
for 4 seconds and then returned to the rest position for 
a predetermined inter-motion class delay period.  
Trials 1-4 used inter-motion class delay periods of 3, 2, 
1, and 0 seconds respectively.  Note that a delay of 0 
in trial 4 implies that the subjects instantaneously 
transitioned between the motion classes for this trial. 
Trials 5-8 used inter-motion class delay periods of 2 
seconds.  Each subject was given a brief rest period 
between trials to prevent fatigue.  The entire 
experiment, including electrode placement took less 
than two hours to complete.   

   MES data recorded during trials 1-4, excluding 
the inter-motion class delays, were used to create a 
set of training data.  MES data recorded during trials 5-
8, excluding inter-motion class delays, were used as a 
test data set.  All data were collected using a custom 
built pre-amplification system, a 16-bit DAQ and 
custom data acquisition software, sampled at 1 kHz 
per channel. The amplifier gains were set such that the 
detected myoelectric signal filled a dynamic range of 5 
Vpp. 

 
Experiment 2 Protocol 
 

MES data corresponding to 9 motion classes 
were collected from 1 shoulder disarticulate amputee 
who had received targeted muscle reinnervation 
(TMR) surgery.  Twelve stainless steel electrode pairs 
were placed over clinically used TMR control sites 
which were identified in high density electromyography 
experiments [5].   

Experimental data were collected for 2 trials.  
Each trial consisted of 2 repetitions of the following 9 
types of motion classes performed in sequential order: 
elbow flexion/extension, wrist pronation/supination, 
wrist flexion/extension, hand open, hand close,  and a 
rest class.  Each repetition lasted for 5 seconds with a 
3 second inter-motion class delay between 
contractions.  Trail 1 was used to train the pattern 
recognition system and trial 2 was used for testing.  
The subject was an experienced pattern recognition 
user and was provided a brief practice period during 
which the MES were inspected by the experimenter.  
 
Signal Processing - Experiment 1 
 

Simulated noise values were added to the data 
collected from experiment 1, but not experiment 2.  
Two different noise situations were simulated; 1) the 
training and test data were corrupted by the same 
noise amplitudes, and 2) training and test data were 
corrupted by different noise amplitudes.  In both cases, 
the simulated noise frequencies were 60 Hz, 120 Hz, 
and 180 Hz, and simulated noise amplitudes were VN 
(the baseline noise) 1/3VN and 1/5VN for each 
respective harmonic..  A number of different baseline 
noise amplitudes, VN, were investigated; ranging from 
no added noise to 1V peak to peak. 

 The pattern recognition based myoelectric 
control system used for myoelectric signal 
classification consisted of time-domain feature 
extraction based on 150 ms analysis windows, 
followed by classification with a linear discriminant 
classifier.  This control system has been described 
previously [2], and has been shown to effectively 
classify the motions under investigation for the intact 
limbed subjects [5] and the TMR amputee subject.  

Classification accuracies were computed for two 
different filtering cases; with and without notch filtering 
to remove noise frequencies.  The notch filters were 5 
Hz Butterworth band-reject filters centered at 60, 120, 
and 180 Hz.   
 
Signal Processing - Experiment 2 
 

The same pattern recognition control system 
used to process experiment 1 was used to determine 
the classification accuracy for the TMR amputee with 
and without notch filtering.  The notch filters were 5 Hz 
Butterworth band-reject filters centered at 60, 120, 
180, 240, and 300 Hz.  These frequencies were 
determined by visual inspection of the frequency 
spectrum of the raw signals. 

 
 
 
 



RESULTS 
 

Table 1 displays the results of experiment 1 
without notch filtering.  The results are averaged over 
the 10 subjects.  The table diagonal represents 
situations where the training and test data have been 
corrupted by the same noise amplitudes while the off-
diagonals represent situations where the training and 
test data have been corrupted by different noise 
amplitudes.  Table 2 displays a similar table, except 
notch filters were used to remove the noisy frequency 
components. 

 
 Test Noise Amplitude (V) 

 0 0.25 0.50 0.75 1.00 
0 91.4 60.9 39.7 29.6 22.9 
.25 76.4 90.8 72.6 50.6 35.9 
.50 36.8 60.3 78.2 89.1 76.3 
.75 21.8 27.9 43.6 54.5 66.0 Tr

ai
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se
 

A
m

pl
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(V
) 

1.00 14.6 18.1 24.4 29.3 37.39 
 
Table 1:  Classification accuracies, in percent, computed 
for a number of different noise corruptions without 
notch filtering. 

 
 Test Noise Amplitude (V) 

 0 .25 .50 .75 1.00 
0 91.6 91.6 91.5 91.2 90.7 
.25 91.7 91.7 91.6 91.4 91.1 
.50 91.8 91.8 91.8 91.7 91.7 
.75 91.7 91.7 91.6 91.7 91.7 Tr

ai
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(V
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1.00 90.9 90.8 91.0 91.1 91.3 
 

Table 2:  Classification accuracies, in percent, computed 
for a number of different noise corruptions with notch 
filtering. 
 

Figure 2 displays a plot of the frequency spectrum 
for a representative subject and channel in experiment 
1.  Figure 2a shows the spectrum of the raw signal, 
and figure 2b shows the result of the notch filtering 
after adding noise. 

The average classification accuracy of the TMR 
amputee subject was found to be 54% without notch 
filtering, and 87% with notch filtering.  Figure 3 
displays a plot of the frequency spectrum with and 
without filtering.    

 

 
Figure 2:  Frequency Spectrum of representative MES 
from simulation experiment (a) before filtering, and (b) 
after filtering. 
 
 

 
Figure 3:  Frequency Spectrum of representative MES 
from TMR amputee (a) before filtering, and (b) after 
filtering. 
 
 

DISCUSSION 
 

The dataset collected in experiment 1 was used 
as a control data set to investigate how amplitude 
varying power-line interference affects classification 
accuracy.  It is evident from table 1 that classification 
accuracy decreases dramatically if noise levels differ 
between training and test data; however, degradation 
is less pronounced when similar noise is added to both 
training and test sets. It appears that the classification 



system still yields high classification accuracy if a small 
amount of noise (<0.25 Vpp) is added to both the 
training and test data.   

It is evident from table 2 that notch filtering the 
training and test data restores classification accuracy 
to a high level.  The average classification accuracy for 
the noise free data was found to be 91.4% and actually 
increased slightly to 91.6% after notch filtering.  This is 
most likely because the experimental data contained a 
small amount of 60 Hz noise despite efforts to collect 
noise free data.  Figure 2 displays the section of the 
spectrum removed by notch filtering.  The results of 
this experiment suggest that even though considerable 
power is removed in the notches, it is not required for 
motion discrimination.   

While it may seem trivial to add noise only to filter 
it using notch filters; the authors wish to illustrate that 
the portions of the spectrum which tend to be 
corrupted by powerline interference are not critical for 
motion discrimination.  Furthermore, leaving this 
portion of the spectrum in the signal could lead to a 
catastrophic system failure if the user moved from a 
low-noise to a high noise environment.      

The data collected in experiment 2 contained 
much more noise (see Figure 3) than the data 
collected in experiment 1.  There are several likely 
reasons for this including; 1) the subject’s MES were of 
a much smaller amplitude than the normally limbed 
subjects and consequently required a much larger 
amplification factor, 2) the electrode mismatches of the 
non-gelled stainless steel electrodes were likely higher 
than the electrode mismatch of the Duotrodes; 3) the 
environment in which the measurements were taken 
was different and contained a different amount of 
interference, and 4) a smaller ground electrode was 
attached in experiment 2.  It should be noted that the 
measurements were taken from the TMR patient while 
wearing their socket normally worn while operating 
their prosthesis.  The classification accuracy of the 
data prior to notch filtering was 54%, rendering the 
controller unresponsive and leading to the collection 
session being considered a clinical failure. After notch 
filtering the accuracy was improved to 87% which 
compared well to previous data collection sessions 
performed using gelled electrodes.  

   
CONCLUSIONS 

 
This work demonstrates that notch filtering the 

MES at power-line interference frequencies can 
increase robustness in a pattern recognition based 
myoelectric control system.  Simulations have shown 
that extraneous noise can greatly degrade 
classification performance, particularly when varied 
with respect to training levels. Using notch filtering, 
problematic frequencies were selectively removed, 
without losing discriminatory MES information, 
returning classification levels to ‘noise free’ levels.  
Amputee data, collected during a session which was 
deemed to be a clinical failure, was shown to yield 
good classification accuracies when notch filtered. 
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