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ABSTRACT 

The paper presents an algorithm that simulates the 
internal remodeling of bone. This model is based on 
the thermodynamic theory of open systems applied to 
biology. It takes into account the coupled influence of 
the mechanical state and chemical properties and was 
set-up as a 5x5 differential system. An algorithm based 
on this system has been implemented into a Finite 
Element software (Altair Hypermesh©). Tests on femur 
have been conducted. The results show a good 
correlation with experimental data. 
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INTRODUCTION 

The bone remodeling behaviour has been studied 
for the last thirty years and many interesting works 
have been performed. A full bone remodeling model 
would enable us to fight osteoporosis by preventive 
advices and treatments. It could also improve fracture 
healing through a better understanding of loading 
influence. Better orthopaedic prosthesis design would 
diminish the risk of failure; increase the life span of 
implants while reducing of the design-costs. 

The two main classes of functional adaptation 
models are the phenomenological and the optimization 
ones. The second often gives good results for the 
density distribution.[1] However, they do not simulate 
the real biological phenomenon with a representation 
of the density evolution through time. They give the 
final state, but the time evolution of the process is 
required to understand the influence of the mechanical 
and chemical stimuli on the prosthetic integration. 

In the mean time, the majority of old 
phenomenological bone remodeling models are too 
restrictive on their hypotheses, often considering either 
only mechanical or biological stimulus.[2] Current 
improved models now simulate the coupled influence 
of chemical and mechanical stimuli.[3] 

The latest improvement in the understanding of the 
biological pathway of bone remodeling lies in the so-

called RANK-RANKL-OPG theory.[4] It describes the 
interactions between biological components (mainly 
cells and proteins) that generate the known remodeling 
behaviour. Moroz [5] performs a wide and complete 
mathematical study of the biological parameters 
influence on remodeling. However, this model shows 
some missing points. The influence of osteoclasts and 
osteoblasts on the bone density is considered linear. 
Moreover, the kinetics of chemical reactions is 
independent of the mechanical state. In addition, as 
this model has been implemented into a mathematical 
solver, it only simulates the evolution of a single 
volume of bone, without taking into account the 
influence of the surrounding bone. 

NEW MODEL THEORY 

The chemical reaction leading to bone adaptation 
were deduced from the RANKL-RANK-OPG theory. 
The chemical process was simplified to the five main 
steps of bone remodeling: initialization, bone 
resorption by osteoclasts (OC), osteoblast (OB) 
activation, creation of osteoid (apposition) and 
mineralization of osteoid.[6] The theoretical model is 
described in [7]. 

The cells involved are mononuclear cells, 
multinucleated osteoclasts and osteoblast activators. 
The bone is represented by the osteoid and the old 
bone. The biological steps are translated into kinetic 
equilibrium reactions and then into a set of five coupled 
ordinary autonomous differential equations. These 
equations (Equation 1) are composed of the 
normalized concentration of biological components (Ni) 
as variables, Ji the biological components fluxes, δ the 
reaction speed, β the effect of initial concentration and 
Di the influence of mechanical state through the strain 
applied on the cells. As shown, the mechanical state 
affects every chemical reaction thanks to a linear 
function between the Di parameter and the product 
between the strain and the frequency. This product 
represents the strain rate, which is one of the most 
representative mechanical stimuli.[8] For multi load-
cases, the stimulus is the larger strain created by all 
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the loadings.[9] The overall density is calculated as the 
addition of newly-formed and old bones. 

As the differential system used does not have an 
analytical solution, an iterative scheme is necessary to 
solve it. After some tests, the best results were found 
with a Runge-Kutta-Fehlberg method.[10] 

With this theory, in the case of unloaded bones, the 
density reached is almost 30%. This is more 
physiologic than many models in which the density 
drops to 0%. 

IMPLEMENTED ALGORITHM 

Based on this theory, an algorithm that simulates 
the evolution of density in time was designed and set 
as a macro into Altair Hypermesh© v8.0sr1.[11] Its 
different steps are described in the Error! Reference 
source not found.. 

 
Figure 1: Algorithm 

The Finite Element solver determines the strain on 
every bone element throughout the whole model. 
Considering a loading frequency, the algorithm can 
then deduce the strain rate of those elements, which is 
our mechanical stimulus. According to this stimulus, it 
calculates the mechanical influence parameter of the 
differential system (Di). This value changes for each 
element and at each iteration. As a mathematical 
process, it can yield negative concentrations. To avoid 
this, some data are corrected. 

Once this parameter is known, the algorithm solves 
the differential system. Its resolution is done using the 
Runge-Kutta-Fehlberg scheme. The time increment is 
deduced also for each element with this method. It 
calculates from an estimation of the error the time step 

required to reach a precision set by the user. A global 
time step is imposed to obtain synchronism between 
elements as they all simulate the same period of time. 
Considering those two times parameters, we can 
deduce then the number of loops that each element 
has to perform.  

Once this step is performed for each element, the 
larger time step is chosen as the next iteration global 
time step. This parameter is checked to be lower than 
an extreme value set by the user and it directly 
influences the quality of the results. 

For each element, the resolution of the differential 
system gives the updated value for the five 
concentrations. All of them are corrected to have 
physic values (between 0 and 1). Then, the algorithm 
adds the old and new bone concentrations to obtain 
the update value of the density of the given element.  

Each element is composed of old and newly 
mineralized bones. As the two components do not 
have the same Young modulus, each element is 
biphasic. Using the “mixture law”, the equivalent 
density is calculated. Then, due to modeling limits, the 
elements density can only have discrete values, so 
they are corrected. The three densities used 
(calculated, equivalent and discrete) are adjusted to 
stay positive and inferior to one. The real density must 
remains inside limits set by the user. 

The mean density of the model is calculated from 
each element real density and is called here the Bone 
Mineral Density (BMD). It is divided into two parts, the 
cortical BMD (for more than 70% density elements) 
and the trabecular BMD. The evolutions of the three 
BMD between two successive iterations indicate the 
convergence state. Then the process loops and starts 
a new finite element analysis. 

 As a convergence criterion, the algorithm uses 
the mean value of the density variation between the 
iterations (n) and (n-1) and between the iterations (n-1) 
and (n-2). Considering three successive iterations 
avoids declaring convergence when elements are 
oscillating. There are two convergence criteria. The 
first is local and represents the maximum variation of 
density of each element. The second criterion is global 
and uses the variation of the BMD. 

The relation between the Young modulus and the 
density depends on the orientation of the element and 
the type of bone (cortical or trabecular). Meanwhile, it 
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always has the following form 0. rE E d=  where E0 
stands for the full-dense Young modulus and d the 
density. Some authors consider as value for the r 
parameter 2 or 3.[1, 3] but accurate values depending 
on the type of bone and its orientation can be used.[6] 
For the trabecular bone, the values are 1.64 in the 
axial direction and 1.78 in the transverse one. For the 
cortical bone, those values are 3.09 and 1.57. 

Please notice that in this article, “density” is used 
for volume fraction. Consequently, it stands for the 
ratio between the used space and the available space, 
so it is are non-dimensional and range from 0 to 1. 

RESULTS 

The algorithm was applied on several mechanical 
parts with good results. The algorithm always 
converges except for overload when too many 
elements are destroyed. It is the only case where a 
steady value of density is not reached. Finally, the 
process has then been used to simulate the density 
evolution of a femur. The numeric model used for the 
femur is the "Standardized Femur" solid model 
designed by M. Viceconti and available on the BEL 
Repository (Istituti Ortopedici Rizzoli, Bologna, Italy). 
For this study, only the upper part of the femur has 
been used. It has been imported into Altair 
Hypermesh© v8.0sr1. The meshing consists of 16250 
tetrahedral elements and 3825 nodes. Refined models 
will be used to obtain more accurate results. With this 
model, the running time is approximately 8 hours.  

The load is constant throughout the process. The 
load case from Heller [12] is composed of walking and 
stair climbing for a 90kg person. 

The loading frequency is the one felt by cells, not 
the actual frequency applied on the bone. 

The starting point of the simulation is a coarse 
repartition of the elements between two limits of 
density (5% and 95%). The chosen material for bone is 
orthotropic with its main direction on the x-axis. The 

compliance matrix based on the literature [13] is shown 
in the Table 1. 

Table 1: Old bone material properties 

20 10,9 11,5 0 0 0
10,9 21,7 11,5 0 0 0
11,5 11,5 30 0 0 0

0 0 0 6,56 0 0
0 0 0 0 5,85 0
0 0 0 0 0 4,74
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The new bone properties are 11 GPa for the main 
direction and 16.5 for the others. The Poisson ratio is 
0.4 in all directions for both bones. The volume fraction 
is between 5 and 95% with a full density of 1.6 g/cm3. 
The reference strain is 0.0075. The biologic 
parameters are the speed ratio of OC maturation 
(20.29), OC activation (10.03), deposit of osteoid 
(5.75) and mineralization of bone (3.08). The sums of 
initial component concentration are for initial mixture 
(5.23), for multinucleated OC (15.10), for OB activator 
mixture (3.22), for OB (2.28) and for mineralization 
mixture (3.98), in the end, the OC (2.38) and the 
mineralized bone fluxes (5.07). 

The Error! Reference source not found. plots 
represent the density evolution vs. time on the overall 
model. Different cases have been represented. For the 
four first ones, the standard forces were applied with 
several different frequencies.[12] For the last one, the 
loads have been reduced by half. 

The curves of the variation of density in time fit the 
density evolution found with Basic Multicellular Units 
BMU) theory. We can notice three different phases: a 
quick bone resorption followed by bone apposition and 
completed by bone mineralization. The time length of 
each phase depends on the applied load. The overall 
behaviour is very similar to the local behaviour of each 
element. 

For the two last cases, the first one is obtained with 
a 60% reduced frequency and the second with a 50% 
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Figure 2 : Density vs. time evolution
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lower loading. As the two responses are very similar, it 
enables us to conclude that loading force and 
frequency act the same way on the remodeling 
process. This validates our hypothesis about the 
strain-rate stimulus.  

We can notice as well that the algorithm converges 
more quickly for high and low loadings. In the case of 
standard loadings, the time distribution of the three 
stages is 1.1 month for the bone resorption, 5.7 
months for the apposition and 9.2 months for the 
mineralization. Those values are in accordance with 
Tovar [3]. 

Error! Reference source not found. shows on 
the left, the meshed geometry of the bone used to 
perform the simulations. On the right, there is the result 
of volume fraction repartition after convergence (in 
17.4 months) of bone remodeling with a standard 
loading and a 0.5 Hz frequency. The mid-section 
shown enables to visualize the internal distribution of 
bone density. We can notice that this distribution is 
similar with the one of real bones with a hollow center 
and a part of the medullary cavity. 

 
 However, the density range is too high to fit with 
the physiological data. Likewise, the medullary cavity 
has not a binary density like real bones (high density 
and no bone). Furthermore, the result for the spherical 
head is not physiologic. Up to our comprehension of 
the phenomenon, the shape of the femur head as well 
as its density come from a cinematic functional 
purpose (to enable the movement of the limb). Its 
presence could not be justified as a process of the 
bone remodeling alone, then it is not simulated here. 

DISCUSSION 

Because of the lack of experimental data, we only 
used five chemical reactions of remodeling. Based on 
specific experiments, it would be useful to have more 
accurate parameters and use more than five 
equations. This would provide a more detailed and 
accurate model. 

Because of simulation limit, every element is 
defined in the global orientation. It would be interesting 

to manage elements orientation and anisotropy 
(increase of rigidity in the more stressed direction). 

To conclude, our model is able to globally 
reproduce the adaptation of bone to loadings and its 
evolution through time. The thermodynamic theory 
enables to avoid the hypothesis made in many models, 
particularly for the unloaded cases and for the 
description of the “Wolf’s law”.[3, 14] This method 
seems to be closer to the physiological process. 
However, its increased complexity implies more 
parameters that induce a much more sensitive model. 
For example, the starting point (density distribution for 
the first iteration) needs to be more precise to obtain 
accurate results. 

As a perspective, further investigations will be 
performed in order to acquire a complete validation as 
well as to precisely determine the values of the 
different parameters and their influence on the bone 
remodeling. 
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Figure 3: Geometry of the initial and final states 


