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ABSTRACT

Three-dimensional (3-D) simulations of ultrasound
image formation can be used to investigate quantita-
tive relationships between characteristics of ultrasound
images and the microscopic structure of tissue, which
can improve tissue characterization methods. However,
such simulations involve high computational complexity
which limits their use in imaging research. A parallel
3-D ultrasound simulator is presented that uses an ef-
ficient numerical method to compute acoustic propaga-
tion. The simulator runs on computer clusters and en-
ables accurate 3-D simulations with short running times.
Ultrasound images of a tissue-mimicking phantom cre-
ated using the simulator show realistic 3-D refraction ar-
tifacts. The parallel execution time of a simulated image
using 20 cluster nodes was 18.61 hours compared to a
serial execution time of 357.50 hours.

INTRODUCTION

Ultrasound imaging simulations are used to investi-
gate quantitative relationships between ultrasound sys-
tem characteristics, physical properties of tissue, and
the characteristics of the image data. This should lead
to improved methods of tissue characterization and au-
tomated image analysis. The core of an ultrasound
imaging simulation is a numerical solution of the for-
ward scattering problem, which is the computation of
scattered and reflected waves given an incident pulse
and a description of the propagation medium.

Computational complexity remains a major barrier to
this research, because ultrasound imaging problems
involve large-scale simulations with propagation dis-
tances on the order of hundreds of wavelengths, and
hence require enormous computational resources and
long running times. To perform accurate and fast three-
dimensional (3-D) simulations, it is necessary to com-
bine efficient numerical methods, which obtain high ac-
curacy using minimal computational resources, with the
use of parallel and distributed systems (PDSs).

The k-space methods [1] provide an attractive nu-
merical approach to perform ultrasound imaging sim-

ulations. In these methods, spectral evaluation of spa-
tial derivatives is combined with a temporal correction
that minimizes the numerical error otherwise introduced
during temporal iteration of the field. The combina-
tion of these two features permit the k-space methods
to achieve high numerical accuracy with much coarser
spatial and time steps than are needed for other nu-
merical approaches such as finite-difference and finite-
element methods. The use of coarse spatial grids and
time steps reduces the computational complexity of the
simulation. One formulation of a k-space method is the
two-dimensional (2-D) algorithm developed by Tabei et
al. [1] based on coupled first-order acoustic wave equa-
tions. In this paper, the 2-D first-order k-space method
of [1] is extended to support 3-D ultrasound simulations.

Although the k-space methods use coarse temporal
and spatial steps, they still require large memory and
processing resources as well as long running times to
carry out 3-D imaging simulations that involve multiple
pulse-echo acquisitions, or scan lines. PDSs enable
3-D imaging simulations within feasible running times.
One important class of PDSs is computer clusters. A
computer cluster is a group of independent comput-
ers, or nodes, that communicate with each other via
a communication network. The nodes of a computer
cluster work together as a single integrated computing
system. Computer clusters have a good performance-
to-cost ratio and tend to be an accessible method of
high-performance computing for most users. Therefore,
this paper presents a parallel 3-D implementation of
the first-order k-space method that runs on a computer
cluster.

THEORY

In this section, the first-order k-space method is re-
viewed and formalized into three dimensions based on
the derivation employed in [1] for the 2-D first-order k-
space method.

The first-order k-space method solves the coupled
first-order linear acoustic wave equations in a lossless
fluid with spatially variable sound speed and density [2]:



∇p(r, t) = −ρ(r)
∂u(r, t)

∂t (1)

∇.u(r, t) = −
1

ρ(r)c(r)2
∂p(r, t)

∂t

where p(r, t) is the acoustic pressure field, u(r, t) is the
velocity field, ρ(r) is the spatially dependent mass den-
sity, c(r) is the spatially dependent sound speed, and r
represents a 3-D spatial vector coordinate (x, y, z).

The spatial derivatives in (1) can be evaluated accu-
rately using the Fourier transform [1]:

∂Φ(r, t)

∂ζ
= F

−1{ikζF{Φ(r, t)}} (2)

where ζ denotes x, y, or z, the function Φ(r, t) can
be any bandlimited signal, F is the 3-D spatial Fourier
transform, F−1 is the inverse spatial Fourier transform,
and (kx, ky, kz) are the 3-D components of spatial fre-
quency, k, defined such that k2 = k2

x + k2
y + k2

z. The as-
sumption of bandlimited acoustic fields is justified since
ultrasound pulses have bandlimited spectra. The tem-
poral derivatives in (1) can be approximated using a
finite-difference scheme:

∂Φ(r, t)

∂t
≈

Φ(r, t + ∆t/2) − Φ(r, t − ∆t/2)

∆t
(3)

where ∆t is the time step. However, this approximation
introduces significant dispersion errors.

Since each equation in (1) evaluates coupled tem-
poral and spatial derivatives, the first-order k-space
method uses (3) to evaluate the temporal derivative
and employs a set of operators, called the first-order
k-space operators, that accurately evaluate the spatial
derivative using the Fourier transform and correct for the
error introduced by the discrete evaluation of the tempo-
ral derivative. Following [1], the 3-D first-order k-space
operators can be expressed as:

∂Φ(r, t)

∂(c0∆t)+ζ
≡ F

−1{ikζe
ikζ∆ζ/2sinc(c0∆tk/2)F{Φ(r, t)}}

(4)
∂Φ(r, t)

∂(c0∆t)−ζ
≡ F

−1{ikζe
−ikζ∆ζ/2sinc(c0∆tk/2)F{Φ(r, t)}}

where ζ denotes x, y, or z, ∆ζ is the spatial step along
the ζ-coordinate, sinc(x) = sin(x)/x, c0 is the sound
speed in the background medium, and sinc(c0∆tk/2) is
the temporal correction term. The exponential coeffi-
cients in (4) indicate that the k-space operators shift the
function Φ(r, t) by half spatial steps before evaluating
the spatial derivatives and applying the temporal correc-
tion terms. For instance, the operator ∂Φ(r, t)/∂(c0∆t)−x
evaluates the derivative of Φ(r, t) with respect to x and
applies the temporal correction term after performing a
spatial shift of −∆x/2.
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Figure 1: (a) Staggered-space and (b) staggered-time sam-
pling configuration of the acoustic fields.

Using (3) and (4), the 3-D first-order k-space method
equivalent to (1) can be written as:

ux(rx, t+) = ux(rx, t−) −
∆t

ρ(rx)

∂p(r, t)

∂(c0∆t)+x

uy(ry, t+) = uy(ry, t−) −
∆t

ρ(ry)

∂p(r, t)

∂(c0∆t)+y
(5)
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where ux(r, t), uy(r, t), and uz(r, t) are the x, y, and z
components of the velocity field, rx = (x + ∆x/2, y, z),
ry = (x, y+∆y/2, z), rz = (x, y, z+∆z/2), t+ = t+∆t/2,
t− = t − ∆t/2, and the spatial derivatives are evalu-
ated using the k-space operators. Equation (5) employs
3-D staggered-space and staggered-time schemes in
which the temporal and spatial sampling of the pressure
and velocity fields are configured as shown in Fig. 1.
The (c0∆t)− and (c0∆t)+ operators are combined in
a way that cancels out the spatial shift between the
terms of each difference equation in (5) and satisfies
the sampling layout of the acoustic fields. This k-space
method enables an exact temporal iteration without dis-
persion errors for homogeneous propagation media, i.e.
ρ(r) = ρ0 and c(r) = c0, and provides high accuracy for
weakly scattering media such as soft tissue [1].

Following the procedure applied to the 2-D k-space
method of [1], frequency-dependent absorption is incor-
porated into the 3-D first-order k-space method using
an Nth-order relaxation model [3]. In this model, the
compressibility is written as:

κ(r, t) = κ∞(r)δ(t) +

N∑

i=1

κi(r)

τi(r)
e−t/τi(r)H(t) (6)

where κ∞(r) is the compressibility as frequency ap-
proaches infinity and it is taken here to be 1/[ρ(r)c(r)2],
τi(r) is the relaxation time for the ith-order relaxation
process, κi(r) is the modulus for the the ith-order re-
laxation process, δ(t) is the Dirac delta function, and
H(t) is the Heaviside step function. Absorption is im-
plemented in the k-space method by additional equa-
tions that model artificial fields with time- and position-
dependent state variables. The number of additional



equations depends on the complexity of the absorption
model. Our implementation of the 3-D k-space method
incorporates relaxation process absorption using two
relaxation processes, i.e. N in (6) is equal to 2, and
six additional equations.

METHODS

Parallel implementation

For ultrasound imaging simulations that require com-
putation of many independent scan lines, serial evalua-
tion of the 3-D first-order k-space method requires long
running times. To reduce the running time of a sim-
ulation, a parallel implementation of the 3-D k-space
method is developed to enable fast simulations using
computer clusters [4]. This parallel implementation is
achieved by dividing the simulation grid of each scan
line among a group of cluster nodes such that each
node applies the k-space method iteratively on its lo-
cally assigned grid points. Multiple groups of nodes are
used to compute independent scan lines concurrently.

Numerical accuracy evaluation

The incident pulse used to evaluate the accuracy of
the 3-D k-space method and the B-mode imaging sim-
ulations described in the next section has a Gaussian
envelope, a center frequency of 40 MHz, and −6-dB
bandwidth of 24 MHz. This is a typical pulse used for
small-animal imaging in preclinical research.

The accuracy of the k-space method was evaluated
using a benchmark test in which the scattered field from
a fluid sphere of diameter 0.24 mm is computed and
compared with an analytical plane-wave solution [5].
The sphere has the acoustic properties of human fat
(c = 1.478 mm/µs and ρ = 0.950 g/cm3) [1] and is em-
bedded in a water background at body temperature (c =
1.524 mm/µs and ρ = 0.993 g/cm3) [1]. The total pres-
sure field is recorded at 45 observation points located
in the forward scattered direction on a line 0.48 mm in
length perpendicular to the propagation direction. The
accuracy is measured using the L2 error [1] between
the pressure signals recorded at the observation points
using the k-space method and the analytical solution,
respectively. The accuracy results are reported for thir-
teen Courant-Friedrichs-Lewy (CFL) numbers [1] vary-
ing between 0.1 and 1.3 with an increment of 0.1 with
the spatial step fixed at 4 points per minimum wave-
length, where the maximum frequency of the incident
pulse is taken as 70.9 MHz. The CFL number relates
the time step to the spatial step such that CFL = c0∆t

∆x .
The performance of frequency-dependent absorption

is tested by propagating the incident pulse in a medium
with sound speed and density of water at body tem-
perature. The parameters of the two relaxation pro-
cesses, which are optimized to approximate an absorp-

tion coefficient of 0.05 dB/cm/MHz, are given by: κ1=
4.85×10−4κ∞, τ1= 4 ns, κ2 = 4.51×10−4κ∞, and τ2=
40 ns. The incident pulse is propagated using a spa-
tial step size of four points per minimum wavelength
and two CFL numbers: 0.25 and 0.5. The simulated
frequency-dependent absorption is measured and com-
pared with an analytical formula of relaxation absorption
as a function of frequency [3].

B-mode imaging simulations

An example B-mode imaging simulation is carried out
using a tissue-mimicking phantom to demonstrate the
feasibility of the 3-D parallel k-space method for imag-
ing studies with short execution times. The phantom
is composed of an infinite-length cylinder of diameter
1.7 mm with acoustic properties of connective tissue
stroma (c = 1.550 mm/µs and ρ = 1.040 g/cm3) [6]
containing two internal spheres of diameters 0.5 and
0.4 mm with acoustic properties of human fat and sur-
rounded by a background medium with acoustic prop-
erties of water at body temperature. The axis of the
cylinder is aligned along the z-axis and the centers of
the spheres are located on the xy plane (z = 0). The
incident pulse is transmitted along the y direction from a
highly-focused spherical transducer with a 0.47 mm di-
ameter, a 1.23 mm focal length, a focus located on the
xz plane (y = 0), and the same center frequency and
bandwidth as the previous simulations; the same trans-
ducer is used to receive the backscattered waves. The
characteristics of the modeled transducer are chosen
to approximate the lateral spatial resolution and depth
of field of a 40 MHz transducer used in a commercial
high-frequency ultrasound system [7]. A set of parallel
B-mode image planes are obtained at various z coordi-
nates, where each image is composed of 65 scan lines
that are equally-spaced by 40 µm along the x direction.
The simulation of each scan line is carried out using
a computation grid of 128×512×128 points, a spatial
step of 5 µm, and a time step of 1.64 ns. Each B-mode
image is computed using 20 nodes, such that the first
60 scan lines are simulated by allocating two nodes for
each line, while the simulation of the last five scan lines
is performed by using four nodes for each scan line.

RESULTS

Numerical accuracy

Accuracy results for the 3-D first-order k-space
method obtained using the sphere benchmark problem
are presented in Fig. 2(a) as a function of CFL number.
The k-space method achieves high accuracy for CFL
numbers below 0.5; however, the error values increase
gradually as the time-step size increases for CFL num-
bers greater than 0.5. For the range of CFL numbers
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Figure 2: (a) L2 error of the 3-D k -space method as a function
of CFL number. (b) Performance of the relaxation absorption
model.

examined in this study, the k-space method did not suf-
fer from any numerical instability. The high accuracy
and stability of the k-space method enables the use of
coarse spatial and time steps while achieving accuracy
higher than other comparable methods.

The performance of frequency-dependent absorption
is shown in Fig. 2(b) for a range of frequencies within
-40 dB from the central frequency component in the
incident pulse spectrum. The absorption as a func-
tion of frequency obtained using CFL numbers of 0.5
and 0.25 is very close to the theoretical frequency-
dependent absorption [3]. However, the numerical ac-
curacy of frequency-dependent absorption at high fre-
quencies that is obtained using a CFL number of 0.25
is better than the accuracy achieved with a CFL number
of 0.5. For example, relative error at 50 MHz reduced
from 1.9% to 0.7% by using a CFL number of 0.25 in-
stead of 0.5.

B-mode imaging simulations

The simulated B-mode images for the tissue mimick-
ing phantom are shown in Fig. 3, where each panel
presents a B-mode image plane obtained at different el-
evations along the z-axis. The B-mode images show re-
alistic 3-D refraction artifacts that appear as shadow re-
gions with reduced brightness located below the spher-
ical lesions. Such 3-D artifacts cannot be obtained us-
ing 2-D simulations. The serial execution time required
to compute each image was 357.50 hours, compared
to the parallel execution time of 18.61 hours using 20
nodes.

(a) (b)

Figure 3: Simulated B-mode images of a tissue-mimicking
phantom containing spherical lesions acquired when the focus
of the transducer is located at x = 0, y = 0, and (a) z = 0 mm
and (b) z = 0.2 mm. Panel (b) contains a shadow region with
reduced brightness indicated with a white arrow.
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