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ABSTRACT 

The identification and segmentation of heart beats 
in a phonocardiogram signal is of great interest, with 
applications ranging from diagnosis to use as a timing 
source. This paper proposes a new algorithm for the 
identification of the first and second (S1 and S2) heart 
sounds and for segmentation of the signal. The 
proposed algorithm is a novel combination of 
documented techniques, leading to improved 
segmentation accuracy. The Shannon Energy is first 
used to find sounds of interest.  The algorithm 
subsequently uses the Mel-Scaled WaveleTransform 
(MSWT) which is a modified Mel-Frequency Cepstral 
Coefficient (MFCC) algorithm with the Discrete 
Wavelet Transform (DWT) in order to reduce the 
impact of noise on the coefficients. The coefficients 
and sounds of interest are used to distinguish S1 from 
S2 and segment the signal accordingly. The algorithm 
is tested on real signals and is compared to a simpler 
Shannon Energy algorithm and to a traditional MFCC 
based algorithm. The new algorithm presents an 
improvement in accuracy especially when signals 
contain noise. It is therefore less susceptible to outside 
interference and could be used more accurately in a 
hospital setting. 

INTRODUCTION 

Auscultation is a valuable method for the detection 
of many heart disorders and dysfunctions. There are 
other diagnostic methods available such as the 
electrocardiogram (ECG), the echocardiogram and the 
ultrasound, but heart sound auscultation is the most 
common one due to its low cost and non-invasive 
ability to provide information concerning the heart 
valves and hemodynamics of the heart. The 
phonocardiogram (PCG) is a recording of the heart 
sounds and murmurs. It contains the first and second 
(S1 and S2) sound components associated with the 
closure of the valves during systole and diastole, as 
well as any abnormal components. The segmentation 
of the heart beats in a phonocardiogram is done prior 
to the analysis of the heart sounds for diagnostic 
purposes [1-3]. Many different methods of heart sound 
segmentation and identification have been introduced 

in the past using techniques such as the wavelet 
transform [2-4], Shannon energy [1-9], mel-frequency 
cepstral coefficients (MFCC) [1, 3, 9, 10], and the mel-
scaled wavelet transform (MSWT) [10]. 

The time-domain and frequency-domain features 
alone were found to be insufficient since the heart 
sound signals contain non-stationary characteristics. 
Therefore, the wavelet transform, a time-frequency 
representation technique, has been proposed to 
characterize recorded heart sounds, providing 
information on the time-frequency content of the 
phonocardiogram during the whole cardiac cycle [10, 
11]. The wavelet transform eliminates high frequency 
noise, but can make false detection for noises 
overlapping in frequency. Consequently, as an attempt 
to reduce the false detections, a method combining the 
wavelet transform and Shannon energy has been 
proposed to locate the fundamental heart sound lobes 
which are computed from the low frequency 
components of the signal [2, 3].  

To identify these heart sound components, many 
authors have proposed a different method based on 
mel-frequency cepstral coefficient (MFCC). To extract 
the features from the phonocardiogram signal, MFCC 
is used, giving good results for clean heart sounds. 
However, since it is sensitive to the recording 
frequency response and its performance is not as 
good in a noisy environment. Therefore, P. Wang et al. 
have proposed to replace the MFCC by the mel-scaled 
wavelet transform (MSWT) which applies the wavelet 
transform to the mel spectrum of the phonocardiogram 
[10]. Their suggested method has produced 
encouraging results compared with those obtained 
using the MFCC. 

 In this paper, the proposed approach is based 
on using the wavelet transform and Shannon energy 
techniques mentioned previously in combination with 
the heart rate estimates from Shannon energy to 
identify the first heart sound component S1. 

In addition, to confirm the S1 results, the 
combination of MSWT and k-means clustering is 
executed on the original signal to extract and classify 
these heart sound components. Finally, the results 
obtained using these two methods are compared. 



METHODOLOGY 

Identification of Sounds of Interest (SOI) 

It has been suggested in [2] that the PCG signal 
S(n) can be modeled as 
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where F(n) represents the fundamental components of 
the heart sounds S1 and S2 (SOI), and O(n) 
represents other sounds which can be decomposed 
into C(n), other heart sound components (such as 
murmurs, etc) and N(n), the noise component. 

The first step consists in isolating F(n) by running 
the signal through an adaptive sublevel tracking 
module [2]. This module is based on a reiterative 
process involving wavelet filtering. The 4th order 
Daubechies wavelet (db4) is used with 7 levels of 
decomposition. The approximation and detail 
coefficients are passed through an adaptive threshold. 
The threshold in the j-level during the kth iteration is 
defined as 
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where Meanj,k is the mean value of the coefficients, fj,k 
is an adjustment factor which is varied between 2 and 
3, and Stdj,k is the standard deviation of the 
coefficients for a given level and iteration. 

The larger signals (coefficients > Thj,k) are kept as 
part of the SOI and the lower signals (coefficients < 
Thj,k) are passed through the wavelet transform again. 
The minimum likelihood method is used to adjust the 
stopping criterion Sp. 
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where is the expected value of square other 

signal set O(n) at iteration k and denotes the 
expected value at iteration k-1. 
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 To extract the envelope of the signal, the 
Shannon energy is calculated according to 
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where, 

),(max(/)( nFnFH norm =  (5)

and N is the length of the selected window. This 
energy calculation emphasizes medium energy 
components and attenuates low intensity signals 
compared to high intensity signals [7]. The Shannon 
energy is calculated by using a 20ms window with a 
10ms segment overlap. The significant sounds are 
then found through the zero crossing points of the 
normalized Shannon energy 
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where < > represents the mean operator. 

 The second stage is the identification of SOI 
based on physiologically inspired properties. To 
validate the peaks in energy that are found we observe 
the following properties: sound lobe duration, time 
interval between sound lobes and the peak energy of 
the sound lobes. The following criterions are used to 
identify S1 and S2 [3]. 

1) All sound lobes have to be between 30ms and 
250ms. This is valid for both healthy and cardiac 
patients. Any sound lobes outside of this range are 
discarded for further processing. 

2) If the time interval between two sounds is smaller 
than 50ms, it is determined that the sound has 
been split. The sound with the greatest energy is 
kept for further processing and the other is 
discarded. 

3) For auscultation done at the apex (5th intercostal 
space), the energy and length (time duration) of 
S1 is generally greater than S2. For auscultation in 
the aortic or pulmonary area the energy of S2 is 
greater than S1. 

A final processing step in the preparation of 
segmentation is the utilization of the approximate heart 
rate of the patient to determine expected time 
intervals. The FFT of the Shannon energy is calculated 
and filtered using a low-pass filter. The peak frequency 
of this spectrum provides a useful approximation of the 
patient’s heart rate. Based on this information and an 
error margin of +-20%, the interval between S1 sounds 
is verified and errors due to missing S2 sounds are 
eliminated or reduced. 

The sounds of interest are then compared based 
on the approximate heart rate intervals, peak energy 
and expected S1-S2-S1 pattern and identified for 
segmentation. 



Mel-Scaled Wavelet Transform Validation 

The mel-scaled cepstral coefficients (MFCC) are 
readily used in the voice identification field. The mel-
scale provides a scaling of the frequency spectrum 
similar to the human ear’s response. Coefficients are 
then extracted with a mel-scaled filter bank and used 
to characterize the sound. The dimensionality of the 
data is reduced by the use of the discrete cosine 
transform (DCT). 

Wang et al. [10] have proposed a mel-scaled 
wavelet transform (MSWT) that serves the same 
purpose as the MFCC but helps reduce the impact of 
noise on the coefficients. 

In order to provide a validation of the 
segmentation results obtained in the first part of the 
algorithm, the MSWT was implemented and k-means 
clustering on the coefficients was used to separate S1 
from S2 sounds. This information, combined with the 
results of the first algorithm, results in a more accurate 
ultimate determination of S1 and S2 and segmentation 
of the PCG. 

The MSWT is implemented by first blocking and 
windowing the data with a Hamming window. The FFT 
of each windowed section is then taken and multiplied 
by the mel-scaled filterbank. The discrete wavelet 
transform (DWT) is then used to reduce the 
dimensionality of the data. 

The coefficients for each sound lobe identified in 
the first part of the algorithm are then summed to give 
a single set of coefficients for each sound of interest. 
K-means clustering then separates the sounds of 
interest into two groups by minimizing the Euclidian 
distance between each set of coefficients and two 
centroids. This results in a group of S1 sounds and a 
group of S2 sounds. The results from this step are 
used to validate the results from the first part of the 
algorithm. 

RESULTS AND DISCUSSION 

Testing method 

PCG recordings were done at the 5th intercostal 
spacing on non-cardiac patients as this was deemed 
the position providing the most precise information for 
segmentation purposes. These were done at 44.1 kHz 
sampling rate. Pre-recorded pathological heart sounds 
were also used to further test the robustness of the 
algorithm to different pathologies. The results of the 
segmentation algorithm were then compared to the 
manually segmented data. 

Preliminary results of the MFCC and MSWT 
algorithms were compared. The k-means clustering 

technique for differentiating between S1 and S2 
sounds was used on the MFCC and MSWT results. 

Results 

Results of S1 identification for the first part of the 
algorithm (without MSWT or MFCC) were generally 
successful as can be seen in Table 1. 

Table 1: Statistical Results of S1 Identification from 
SOI 

Samples Correct 
S1 / 

Correct 
Other 

False 
Positive 

False 
Negative 

Specificity/ 
Sensitivity 

11 Samples 
(7 healthy, 4 
pathological) 

202 / 
206 31 33 

86.9% / 
86.0% 

 

A single pre-recorded example of a mitral 
regurgitation case significantly lowered the sensitivity 
and specificity. In this case, S2 sounds were identified 
as S1 because this pathology makes the S2 sounds 
longer and more energetic than S1 sounds. This 
accounts for 27 of the 31 false positives and 29 of the 
33 false negatives. Without this sample, sensitivity and 
specificity are both 98.1%. However, the MSWT 
correctly identified the S1 and S2 sounds of this 
particular case. Thus, with the use of the MSWT S1 
validation step, this error would have been accurately 
corrected. In this same case, replacing the MSWT 
algorithm with the traditional MFCC still provides errors 
and is thus not useful in correcting the first algorithm. 

In figures 1 and 2 below, we can clearly see the 
attenuating effect of the MSWT on the noise peak 
located between 1.9 s and 2.1 s when compared to the 
MFCC. It can also clearly be seen from these figures 
that for the MSWT, all characteristics provide 
information about each sound lobe. However, with the 
MFCC, only one of the characteristics (the blue line in 
figure 2) provides information about the sound lobes. 
The other characteristics of the MFCC are similar for 
all parts of the sound and characterize heavily the 
noise components of the signal. This provides clear 
indication of the interest in the MSWT validation step 
which clearly reduces the impact of noise on the 
coefficients. 
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CONCLUSION  

This article proposed the use of an adaptive 
threshold wavelet transform filtering technique used 
with Shannon energy, physiological factors and heart 
rate approximation to properly identify S1 sounds and 
segment the PCG. However, this method can still 
present some errors when faced with complex signals. 
Therefore, the addition of an MSWT validation step 
was proposed. Preliminary results indicate that the 
MSWT is less prone to noise than the MFCC and can 
distinguish S1 sounds from others when faced with 
complex signals. Future implementation of more 
robust clustering techniques such as various neural 
networks have the potential of making the use of the 
MSWT validation a successful technique to improve 
accuracy of S1 detection and PCG segmentation. 


