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ABSTRACT 

A wavelet pre-processor is examined as an 
extension to the Sliding Window Autocorrelation 
(SWA) phonocardiogram (PCG) segmentation 
algorithm. The method by which the SWA performs 
unsupervised, synchronous segmentation of 
heartbeats in a PCG is described. The 
appropriateness of using Morlet wavelets for pre-
processing PCGs is also described. A possible 
implementation of a wavelet pre-processor is 
presented with preliminary experimental results. 

INTRODUCTION 

The phonocardiogram (PCG) is a bio-signal that 
represents sounds produced by the heart. During a 
typical heartbeat, the first heart sound (S1) occurs at 
the beginning of systole, and the second heart sound 
(S2) occurs at the beginning of diastole. S1 is caused 
by the closing of the atrial-ventricular valves (i.e. mitral 
and tricuspid), whereas S2 is caused by the closing of 
the semilunar valves (i.e. aortic and pulmonary) [1]. 
The PCG can be used to detect and diagnose 
murmurs, which are usually associated with heart 
valve malfunctions (e.g. stenosis and regurgitation) [1].  

The long-term goal of this work is to develop an 
automated PCG analysis system. Automatic murmur 
detection and diagnoses are well researched. Prior to 
murmur detection, it is necessary to segment the PCG 
to obtain timing information. PCG segmentation also 
allows alignment of multiple segments of the 
cyclostationary PCG signal, improving the signal to 
noise ratio of the PCG during analysis. The majority of 
PCG research has focused on event detection 
assuming accurate PCG segmentation, or has used 
the electrocardiogram (ECG) for PCG segmentation. 
This work investigates PCG segmentation that does 
not require the ECG, hence simplifying the patient 
interface in a PCG analysis system. 

In this work, a wavelet pre-processor is examined 
as an extension to the Sliding Window Autocorrelation 
PCG segmentation algorithm. This pre-processing 
seeks to isolate relevant heart sounds (i.e. S1 and S2), 
suppressing noises not originating from the heart. 

Wavelets have been shown to be effective tools for 
PCG segmentation, in conjunction with techniques 
such as correlator banks [2][3], Shannon energy [4], 
and complexity adaptive filters [5]. In conjunction with 
averaging techniques, wavelets have also been used 
for denoising PCG signals [6]. It is anticipated that 
wavelets will prove useful for PCG segmentation. 

A wavelet transform can provide an indication of 
the time intervals in a PCG signal at which different 
frequencies occur. Since S1 and S2 have been shown 
to have specific frequency ranges (10-180 Hz and 50-
250 Hz, respectively [7]), analysis of the wavelet 
transform can indicate when S1 and S2 likely occur in 
a PCG signal.  

SLIDING WINDOW AUTOCORRELATION 

The Sliding Window Autocorrelation (SWA) is a 
proposed PCG segmentation algorithm, which is 
designed to perform unsupervised, synchronous 
segmentation of complex heart sounds [8].  

A Heart Rate Estimator (HRE) is used which, in 
conjunction with a priori patient information, provides 
an estimate of the heartbeat period Tbeat; the estimated 
heartbeat period is used to set particular parameters of 
the SWA. The estimated heartbeat period corresponds 
to the first large peak of the PCG signal energy’s 
autocorrelation. The time offset range corresponding 
to a reasonable heartbeat period is emphasized, by 
multiplying the autocorrelation by a tapered window. 

Central to the performance of the SWA is the 
calculation of the similarity correlation )(τG  using the 

normalized PCG signal magnitude )(tw . Similar to a 

cross-correlation, the time offset at which a peak 
occurs indicates the probable time difference between 
two highly similar windows. The similarity correlation, 
however, attempts to compensate for beat-to-beat 
magnitude variations, by scaling the cross-correlation 
by the magnitudes of each window.  

Each element of )(τG  is calculated using 

Equations (1)-(4). The two windows to be correlated,  
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The SWA performs two sets of similarity 
correlations. For the first set of similarity correlations, a 
similarity correlation is performed at each 40 ms time 
step in the PCG signal. Each similarity correlation is 
generated by sliding a short window (representing 
75% of Tbeat ) across a longer window. The time offsets 
of the peaks, when taken in sequence, are referred to 
as the offset sequence. When viewed graphically, as 
illustrated in Figure 1, the longest portion of the offset 
sequence that maintains a relatively constant 
magnitude provides a rough indication of where the 
heartbeat template starts. The heartbeat template is 
central to the second set of similarity correlations.  

For the second set of similarity correlations, each 
similarity correlation is generated by sliding the 
heartbeat template across a longer window. Similarity 
correlations are performed towards the right and left of 
the heartbeat template. Towards the right of the 
heartbeat template, the first longer window is 
positioned between 60%−180% of Tbeat  away from the 
heartbeat template. Towards the left of the heartbeat 
template, the first longer window is positioned between 
0%−150% of Tbeat  away from the heartbeat template. 
The time offset of a peak corresponds to the time 
difference to the neighbouring heartbeat. These time 
differences, along with knowledge of the actual 
position of the heartbeat template within the PCG 
signal, are used to calculate the times at which 
heartbeats occur, which correspond to the boundaries 
between heartbeats. In this manner, the PCG signal is 

segmented. Illustrated in Figure 2 is the second set of 
similarity correlations and predicted heartbeat 
boundaries.  

The SWA performs synchronous segmentation, in 
the sense that heartbeat boundaries are located a 
consistent time before S1 in a given PCG signal. For 
the purpose of this work, it is not essential to represent 
the beginning of a heartbeat as the start of systole (i.e. 
S1), as the primary concern is the alignment of 
multiple PCG segments. 

Original results generated by the SWA in [8] were 
evaluated using several conventions. A correct 
boundary should be located at a time before systole 
(i.e. S1) that is consistent with other boundaries in the 
PCG signal. An incorrect boundary could be located at 
a distance before systole that is inconsistent with other 
boundaries in the PCG signal, or could be located 
during systole (i.e. between S1 and S2).  

On a dataset containing PCG signals classified as 
simple (minimal diastolic noise, allowing for distinct 
heartbeat edges), moderate (murmur noise, causing 
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Figure 2: PCG signal magnitude is solid (blue) 
waveform in lower half. Second set of similarity 

correlations represented by solid (green) 
waveforms in upper half. Predicted heartbeat 
boundaries indicated by dashed (red) lines. 
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Figure 1: PCG signal magnitude is solid (blue) 
waveform. Offset sequence is dotted (green) 

waveform. Longest portion of offset sequence that 
maintains constant magnitude is located between 0 

to 1 second. Heartbeat template indicated by 
dashed (red) box. 



indistinct heartbeat edges), and complex (non-
cardiologic noise, such that relevant heart sounds are 
difficult to hear or visualize, as well as highly irregular 
heartbeat sequences), the SWA achieved an overall 
accuracy of 83.2%. The accuracy of the SWA for each 
subset of PCG signals can be seen in Table 1. The 
accuracy of the SWA is limited by the HRE, which 
achieved an overall accuracy of 90.8% [8].  

WAVELET PRE-PROCESSOR 

A wavelet pre-processor is expected to better 
isolate the information to be correlated by the SWA. 
When a heart sound is masked by other noises (such 
as murmurs, talking, crying, etc.), the location of the 
heart sound is uncertain. Consequently, it is more 
difficult for the SWA to identify heartbeat boundaries 
when masked heart sounds are correlated. Wavelets 
could be used to remove confounding noises from 
relevant heart sounds, and hence improve the signal 
to noise ratio of a PCG signal prior to segmentation. 

In a PCG signal, heart sounds are represented as 
short time pulses, and a time-frequency analysis would 
be beneficial. The analysis should reveal knowledge of 
what frequencies occur in a PCG signal, as well as 
when the frequencies occur in a PCG signal. 
Conventional Fourier methods involve only frequency 
analysis, and are not well-suited for this work as they 
provide no time localization. Wavelets can discern the 
frequency characteristics of heart sounds from noise, 
as well as localize the frequency characteristics in 
time; and, hence, are anticipated to be an appropriate 
tool for analyzing PCG signals.  

In general, a wavelet transform involves 
multiplying and integrating a wavelet with each time 
interval of a PCG signal, and repeating for scaled 
versions of the wavelet. A lower scale value generates 
a more compact or compressed wavelet (i.e. 
narrowing width of central oscillation), which can 
correlate well with small periods associated with high 
frequencies. Hence, using a low scale value allows a 
wavelet to detect high frequencies in a PCG signal.  

The result of performing a wavelet transform on a 
PCG signal is a matrix of coefficient values, where one 
coefficient (Cf,t) exists for each scale (or corresponding 

frequency f) at each time interval t of a PCG signal.  
The magnitude of a coefficient indicates the presence 
of sound peaks of frequency f at time interval t. Hence, 
a wavelet transform can be used to determine when 
sound peaks of particular frequencies (i.e. 
corresponding to relevant heart sounds) occur in a 
PCG signal. 

The type of wavelet used for performing a wavelet 
transform should meet several criteria. The wavelet 
should be compact enough to correlate with the 
highest possible frequency in a PCG signal. The 
wavelet should be scaleable, in order to correlate with 
the various frequencies in a PCG signal. The shape of 
the wavelet should be similar to the relevant heart 
sounds. Based on the rationale presented in previous 
work [2], the Morlet wavelet will be initially investigated 
for the wavelet pre-processor in this work. The Morlet 
wavelet contains multiple oscillations, resembling the 
oscillatory nature of the relevant heart sounds [2]. The 
Morlet is also scaleable, so it can correlate with both 
S1 and S2. 

One possible implementation of the wavelet pre-
processor uses a threshold technique. Using the 
Morlet wavelet, a wavelet transform is performed on 
the original PCG signal sorig(t). Coefficients with an 
absolute value above a particular threshold indicate 
the time intervals containing sound peaks. Portions of 
sorig(t) outside of these time intervals are nulled, 
resulting in a modified PCG signal spost(t) in which only 
sound peaks are present. To perform PCG 
segmentation in conjunction with wavelet pre-
processing, the SWA would be applied to spost(t).  

PRELIMINARY RESULTS 

Wavelet pre-processing was applied to PCG 
signals from the dataset of [8], using the threshold 
technique described in the previous section. 
Preliminary results for a PCG signal from the simple 
and moderate subset are presented here. 

The simple PCG signal [9] is representative of 
aortic valve stenosis (insufficient closure of aortic 
valve, during diastole) with ejection click (abrupt 
opening of semilunar valves, early in systole [10]). The 
original PCG signal, coefficients of the wavelet 
transform, and two modified PCG signals (subjected to 
low and high threshold) are shown in Figure 3.  

The moderate PCG signal [11] is representative of 
tetralogy of fallot (four congenital heart defects [10], 
causing murmurs during systole). The original PCG 
signal, coefficients of the wavelet transform, and two 
modified PCG signals (subjected to low and high 
threshold) are shown in Figure 4. 

Table 1: Prediction accuracy of SWA segmentation. 

Dataset Number of heartbeats Accuracy 

Simple 1948 88.9 % 

Moderate 589 83.7 % 

Complex 172 16.9 % 

Overall  2709 83.2 % 

 



Wavelet denoising has demonstrated the ability to 
remove a significant amount of the noise. A high 
threshold can cause more of sorig(t)  to be nulled, such 
that S1 or S2 may not be present in spost(t) (Figure 4d). 
Such distortion may be acceptable, since this work 
does not attempt to characterize or classify individual 
heart sounds, but rather attempts to simply extract 
timing information for PCG segmentation. 

Future implementations of the wavelet pre-
processor could use a different threshold technique, 
where frequency bands beyond the frequency ranges 
of relevant hearts sounds will be excluded from PCG 
reconstruction. 

CONCLUSION 

The use of a wavelet pre-processor is expected to 
improve the signal to noise ratio of PCG signals, and 
subsequently improve the overall performance of the 
SWA segmentation algorithm. Preliminary results from 
one possible implementation of the wavelet pre-
processor, using a threshold technique and a Morlet 
wavelet, show the successful isolation of heart sound 
peaks in a simple and a moderate PCG signal. Further 
research will verify and quantify the improved 
performance of the SWA segmentation algorithm when 
extended by a wavelet pre-processor. 
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Figure 3: (a) Simple PCG signal. (b) Wavelet 
transform coefficients. Modified signal subjected to 

(c) low threshold, and (d) high threshold. 
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Figure 4: (a) Moderate PCG signal. (b) Wavelet 
transform coefficients. Modified signal subjected to 

(c) low threshold, and (d) high threshold. 


