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ABSTRACT 

Three dimensional scanning is gaining popularity 
in the biomedical field for various applications where a 
3D model of the external features of an anatomical 
part is beneficial. An analysis of two different 
calibration techniques, an analytical method and a 
least squares method, for a simple, low cost, 3D laser 
light-sectioning scanner system is presented. Both 
methods are evaluated according to their ability to 
cope with noise in the input calibration data. The least 
squares approach shows better performance under 
noisy data conditions; however both appear suitable 
for the given application. Directions for future work are 
also discussed. 

INTRODUCTION 

For many years, three dimensional (3D) scanning 
systems for acquiring the external shape features of 
arbitrary objects have been used in industry for 
applications such as reverse engineering and part 
inspection. More recently, 3D scanning has been used 
in the biomedical field for applications such as 
orthodontic treatment planning [1], cranial deformation 
research [2], cartilage morphology studies [3], and 
anthropometric data collection [4]. The potential exists 
to expand the biomedical uses of 3D models even 
further, by continuing to develop simpler, more cost 
effective systems for acquiring external shape features 
of biological objects.  

A simple, low cost, 3D scanning system is being 
developed for biomedical purposes which employs the 
laser light-sectioning technique [5]. This technique 
involves measuring the position of an object’s surface 
profile by capturing images of where the profile 
intersects a plane of laser light projected onto the 
object from different angles (Fig. 1). A single planar 
section of an object is obtained from multiple profiles 
captured about the z-axis. A 3D image of the object is 
formed by stacking multiple planar sections along the 
z-axis. 

Since the camera used to capture images is 
located at a fixed angle α to the laser plane, an 
important part of this system is the calibration 

procedure required to eliminate the linear portion of 
the camera perspective distortion for points lying along 
the imaged laser trace (in the x-y plane).  

 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Laser light-sectioning system diagram 

This paper presents an analysis of two different 
calibration techniques for finding a homogeneous 
transformation matrix, T, which can be used to remove 
this perspective distortion: 1) an analytical method 
using projective geometry; and 2) a least squares (LS) 
approach involving the Direct Linear Transformation 
(DLT) algorithm. Both are evaluated in terms of their 
performance under noisy data conditions. The study 
looks at how accurately the calculated transformation 
matrix maps points from the image of the calibration 
grid to their ideal location on the grid in a Cartesian 
coordinate system. Directions for future work are also 
discussed.    

METHODS 

All recorded laser traces lie in the laser plane (x-y 
plane). Hence, the images can be calibrated by 
superimposing a calibration grid of known dimensions 
on this laser plane and recording an image. Fig. 2 
shows such a grid with 1mm

2
 grid squares; the 

highlighted quadrilateral demonstrates the camera 
distortion. A homogeneous transformation matrix, T, is 
computed by taking points from this image at certain 
grid locations and mapping them to their 
corresponding points on the known calibration grid in 
Cartesian space. The two methods investigated for 
calculating T are described below: 
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Figure 2: Calibration grid superimposed on laser 
plane. Highlighted quadrilateral shows perspective 
distortion due to the camera’s incline of α = 40°. 
Corner points P1 to P4 for calibration are indicated, as 
are an additional 16 points for the DLT LS method. 

Analytical Method 

The analytical method, described further in [5], can 
be represented compactly by the linear transformation 
presented in (1). 

W Twρ =
 (1) 

where W(X, Y, 1) are the coordinates of a point in the 
image plane, w(u, v, 1) are the coordinates of the 
same point on the distorted calibration grid image, and 
ρ represents a scaling factor which, when factored out, 
leaves the point W which corresponds to a point in a 
Cartesian coordinate system. The coordinates of four 
known points, along with those of their corresponding 
images on the distorted calibration grid (P1–P4 in Fig. 
2), are enough to uniquely identify the 8 independent 
elements of the homogeneous transformation matrix, 
T. All other image points can then be transformed from 
the projective into the Cartesian plane using T.  

Direct Linear Transform Least Squares Method 

For the DLT LS method, the same notation as given 
in (1) can be used; the matrix T is referred to as the 
DLT matrix. The method for finding T in this case is as 
follows: starting from (1), the expanded notation is 
shown in (2).   
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Multiplying out the right hand side, and dividing the 
first and second equations by the last equation 
removes the homogeneous scale factor ρ as shown in 
(3):  
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(3) 

Rearranging (3) with respect to the DLT matrix 
parameters aij, (i,j=1,2,3) and setting a33 = 1 gives (4) 
for any pair k of control points: 
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(4) 

Since each set of control point pairs gives two 
such equations, 2m equations are obtained from m 
calibration point pairs. These can be represented in 
standard matrix form as A2m×8x8×1=b2m×8, where x is the 
column vector of DLT matrix parameters and b is a 
column vector of known calibration coordinates. At 
least m = 4 control point pairs are necessary to solve 
for the 8 DLT parameters in the above system. 
However, if m > 4, the system is over-constrained and 
a least squares solution can be applied. The pseudo-
inverse of A, A

+
 = (A

T
A)

-1
A

T
, is used to obtain the least 

squares solution x = A
+
b. This approach is anticipated 

to be beneficial for coping with noise that may be 
associated with acquiring grid point locations from the 
image for the control point pairs. 

Experimental Methods 

This analysis examines how the two methods of 
finding T behave with varying amounts of noise 
associated with the points taken from the camera 
image of the calibration grid in order to compute T. 
This noise could arise from issues such as minor 
inaccuracies in the calibration grid or artifacts in the 
image processing methods used to isolate grid corner 
locations and identify their coordinates within the 
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image. A test scenario was generated using a 
transformation matrix known to be representative of 
the mapping required to transform points for the laser 
light-sectioning system presented in [5]. Using the 
inverse of T to transform the four corners of a known 
square on the calibration grid, the corresponding point 
pair locations, as they would appear on the distorted 
image of the grid, were generated (P1-P4 on Fig.2). 
This produced a complete set of ideal control point 
pairs and the transformation that maps between the 
two. In addition to these 4 point pairs, 16 other point 
pairs were generated for use with the DLT LS method 
(×’s on Fig. 2).   

The noise associated with identifying grid 
intersections would be random in nature and is not 
expected to exceed the width of a grid line, which is 
approximately 3 pixel units in our system (at the centre 
of the calibration grid image). Assuming a Gaussian 
distribution, and setting 2 standard deviations to be 3 
pixel units, the variance is σ

2 
= 2.25. Random 

Gaussian noise with zero-mean and noise variances 
above and below 2.25 (σ

2
 = 0.140625, 0.28125, 

0.5625, 1.125, 2.25, 4.5, 9, and 18) was added to the 
4 corner points of the distorted quadrilateral and the 
extra 16 points for the DLT LS method, in both the x 
and y directions. Noisy points were then inputted into 
the 2 calibration algorithms. The DLT LS method was 
used twice; once with 4 control point pairs and once 
with 20 control point pairs. In total, 20 trials were 
performed at each of the 8 noise variance levels for 
each tested calibration algorithm. The radial difference 
between the transformed points and their known 
locations according to the ideal mapping was 
averaged across all 20 trials at each σ

2
 value for the 4 

corner grid points (P1-P4). This average radial error 
was then scaled according to the scaling used for the 
test object imaged in [5] in order to present the results 
in units of mm.  

Using SPSS, a three-way analysis of variance 
(ANOVA) test was conducted on the results to 
determine whether or not calibration method, point 
location, and/or noise level have a significant effect on 
the radial error of transformed points. Pairwise 
comparisons between factors were performed using 
the Tukey and Dunnett’s T3 post-hoc tests to 
determine which calibration methods, point locations, 
and/or noise levels produce mean radial errors 
significantly different from the others. 

RESULTS 

Figs. 3, 4 and 5 show error results at 8 different 
magnitudes of noise for the analytical method, the DLT 
LS method using 4 control point pairs, and the DLT LS 
method using 20 control point pairs, respectively. 
Errors for the 4 test corner points are shown as 

separate data sets. Average error across the 20 trials 
is plotted and standard deviations for the 20 trials are 
indicated with bars.      

Figure 3: Error results for analytical method. 

 

Figure 4: Error results for DLT least squares method 
using 4 control point pairs. 

Figure 5: Error results for DLT least squares method 
using 20 control point pairs. 



Statistically, the ANOVA test revealed main effects 
for all factors: noise variance level (p < 0.001), point 
location (p = 0.038), and method (p < 0.001). The 
effect of noise variance is expected as this factor was 
deliberately increased. There was also an interaction 
found between method and noise variance level (p < 
0.001). 

Although the effect of point location was found to 
be significant, post-hoc tests were inconsistent; the 
Dunnett’s T3 test showed that no point location had an 
error significantly different than the others. Post-hoc 
tests also revealed that there is in fact no significant 
difference between the analytical method and the DLT 
LS method using 4 control point pairs (p = 0.991). The 
DLT LS method using 20 control point pairs, however, 
is significantly better than both of the previous two 
methods (p < 0.001 in both cases). 

Using Matlab’s Symbolic Toolbox, computational 
speed for the analytical method, was considerably 
longer than that of the DLT method. Computation of 
calibration matrices used in the analytical method was 
approximately 7.5 minutes per matrix computation. For 
the DLT LS method, computation of calibration 
matrices was about 0.002 seconds per matrix 
computation, regardless of how many control point 
pairs were used. 

DISCUSSION & CONCLUSIONS 

The following can be observed in Figs. 3, 4 and 5. 
Average radial error increases with increasing noise. A 
point’s location within the image appears to have no 
substantial effect on the amount of error associated 
with its transformation into Cartesian space; at least 
not for the amounts of noise studied for this analysis. 
Differences in point spacing due to the distortion could 
explain the main effect found by the ANOVA test, but 
overall, looking at Figs. 3, 4, and 5 the effect does not 
seem to be a huge factor. Finally, Figs. 3 and 4 show 
comparable errors for all 4 transformed test points 
when the analytical method and the DLT LS method 
using 4 control point pairs are used. The DLT LS 
method using 20 control point pairs (Fig. 5) appears to 
be better than both of these two, which is supported by 
the statistical results.  

As noise levels increase, the improvement of the 
DLT LS method with 20 points over the other two 
methods becomes greater, hence the interaction found 
between noise variance level and method in the post-
hoc tests. The fact that the DLT LS method using 20 
points produces much more accurate point mappings 
indicates that the use of more control point pairs for 
finding T is beneficial.    

Within the noise levels expected for the proposed 
laser light-sectioning system (σ

2
 ≤ 2.25), the DLT LS 

method using 20 or more control point pairs would be 

the most optimal. The average error using this method 
for this noise range, as indicated in Fig. 5, is less than 
0.2 mm for all 4 tested points. This is within a 
reasonable tolerance for the desired accuracy of the 
system at the current stage of development.  

The processing time of the DLT method was 
considerably shorter than the analytical method. 
Clearly, the solution to the over-determined system of 
matrix equations in (4) converges very quickly. It 
should be noted that the calibration matrix is only 
computed once for a given camera setup, and used 
thereafter for transforming all data points lying along 
the laser traces captured by the camera. For this 
system, the difference in computation time between 
these two methods is therefore not necessarily an 
important factor when comparing the two approaches.  

The current prototype has already demonstrated 
sub-mm accuracy [5] and additional work is being 
done to refine the accuracy for testing and validation in 
biomedical applications. 
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