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I. INTRODUCTION 

Muscle loss and motor skill degradation, two 
common outcomes of old age and neurological 
diseases such as stroke affect millions of individuals 
around the world. In fact, it is estimated that over 
200000 Canadians suffer a variety of impairments due 
to strokes alone [1]. Motor skill impairments in 
particular can substantially limit the ability of many 
such individuals to work, participate in recreational 
activities, or even perform the activities of daily living. 
Assistive devices (ADs) have been shown to increase 
the autonomy and quality of life of these individuals, 
and to reduce home care costs and caregiver burden 
[2]. 

Devices such as canes, walkers, and powered 
exoskeletons are all examples of the broad class of 
devices classified as ADs. However, powered ADs 
such as actuated orthoses and exoskeletons have 
been the focus of substantial recent research [3-13]. In 
addition to the benefits described above, these 
devices also have the potential to lower rehabilitation 
therapy costs, and to promote neuromuscular 
recovery. However, this last benefit – promoting 
neuromuscular recovery – is unlikely to be realized 
using the muscle amplification control strategies 
commonly employed on many powered ADs [5-8, 10-
12].  

Muscle amplification control strategies typically 
result in ADs that amplify the user’s strength and 
drastically minimize the effort required to complete a 
particular task. Prolonged use of such devices may 
result in unintentional detrimental effects such as 
muscle atrophy or reduced functional capacity – these 
devices may provide users with too much assistance. 
Furthermore, it is also well known that maintaining an 
appropriate level of exercise intensity is fundamental in 
facilitating neuromuscular recovery during 
rehabilitation therapy [14]. Thus, it is important to 
account for user effort regulation when designing an 
AD controller. This ensures that the AD provides the 
user with the immediate assistance required to 
perform the desired motion or task, and promotes 
functional recovery (or helps sustain functional 
capacity) as a result of prolonged use. 

 This paper presents the concept of a powered AD 
controller designed to help facilitate functional 
recovery via direct regulation of user effort and task-
independent assistance modulation. Section II 
provides an overview of common AD control 
strategies, while Section III presents the proposed 
controller – the assistance regulator - and its 
realization for a powered knee orthosis. Simulation 
results are presented and discussed in Section IV, and 
the paper concludes with a summary of the results and 
a brief discussion of future work in Section V. 

II. CHALLENGES IN ASSISTIVE DEVICE CONTROL 

The desired motion of an AD is typically 
prescribed in real-time using user-supplied input 
signals such as interaction forces measured at user-
device interfaces or surface electromyography (sEMG) 
signals [3-13]. The key challenge in assistive device 
control is in predicting the user’s desired motion (i.e., 
the desired trajectory of the user’s joint that 
corresponds to what the user is thinking about doing). 
Accurate estimates of desired motion provide a means 
for systematically prescribing the appropriate 
assistance magnitude and timing. However, both 
interaction forces and sEMG signals are poor 
predictors of desired motion. In fact, sEMG signals are 
best used as predictors of user effort [3-4, 10-11] or 
muscle force/joint torque [5-7, 9].  

The challenges in predicting desired motion have 
in part led to the muscle amplification control 
strategies commonly used on many powered ADs [3, 
5-7, 10-12]. Some muscle amplification strategies use 
sEMG signals to predict joint torques, and command 
actuator torques proportional to the estimated joint 
torques [5-7]. Simpler approaches such as 
commanding actuator torques proportional to sEMG 
signal amplitudes have been presented in [10-11]. 
Alternatively, more complex methods employing 
learning algorithms to learn the relationship between 
sEMG signals and the user’s intended motion have 
also been considered in [3]. However, we note that few 
researchers directly address the importance of 
regulating user effort in designing AD controllers. 
Accordingly, most AD controllers may not be efficient 



at promoting functional recovery and extended use 
may result in unanticipated detrimental effects. 

III. ASSISTANCE REGULATION IN WEARABLE 
ASSISTIVE DEVICES   

This section presents the knee joint and orthosis 
models used for simulation purposes and a new AD 
controller designed specifically to help regulate user 
effort. The proposed controller – the assistance 
regulator (AR) – consists of a modified AD impedance 
control algorithm previously presented in [13] and 
relies on measurements of the user’s joint torque to 
modulate the assistance provided to the user. For the 
sake of simplicity, the following presentation assumes 
that these joint torque measurements are readily 
available. In practice, these measurements may be 
obtained from empirically derived muscle models that 
relate joint torques (or muscle forces) to sEMG signals 
[5-7, 9]. 

Knee and Orthosis Models  

Consider the situation in which a user sitting on a 
chair uses a 1 DOF powered orthosis to assist knee 
flexion and extension. Both the lower leg and orthosis 
may be modelled as parallel 2nd order rotational 
systems [4]: 
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where gm,b,J,  and l  represent the moment of 

inertia, viscous damping coefficient, mass, 
gravitational acceleration, and the center of mass 

offset, respectively, and mint τ,τ  and kneeτ  represent 

the reaction torque due to the interaction force, the 
torque applied by the motor, and the knee torque 
generated by the user’s muscles,  respectively.  The 

subscripts k  and e  indicate the knee joint and 
exoskeleton properties, respectively.  

In practice, the reaction torque can be estimated 
using a force sensor at the user-device interface. 
However, during simulation, the interaction force is 
modeled as: 
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where P  and D  correspond to the expected stiffness 
and damping at the user-device interface. 

The user’s behavior was modeled using the 
human motor behavior model described in [15]. We 
note that models of this type have been validated 
using motor adaption experiments and are primarily 
suitable for explaining steady state behavior after 
motor adaptation [16].  

Assistance Regulation using a Virtual Impedance 
Model 

The virtual impedance model shown below 
specifies the desired dynamic behavior of the orthosis. 
This model can be integrated in real-time to specify the 
reference trajectory of the orthosis. Assuming a rigid 
connection at the user-device interface, perfectly 
tracking this reference trajectory implies that the 
orthosis - and by extension the knee joint itself - 
exhibits a particular impedance. 
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where 1K , 2K   and 3K  are constants chosen to 

achieve the desired knee joint dynamic behavior, and 

virtualτ  is an additional term used to modify the 

behavior of the controller. In particular, defining virtualτ  

as shown below provides a convenient means for 
regulating the user effort (via regulation of knee 
torque). 
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where lσ β, α, and uσ  refer to the damping gain, 

proportional gain, and lower and upper assistance 
triggers, respectively. In general, the assistance 
triggers would correspond to limits on the maximum 
and minimum allowable muscle-generated joint torque. 
For the simulation experiments considered in this 
paper, the upper and lower assistance triggers 
correspond to the maximum and minimum allowable 
knee torques, respectively, for any arbitrary motion the 
user attempts to generate.  

Substituting (6) into (5) indicates that the controller 
provides no assistance anytime the user’s knee torque 
is bounded between the two trigger values. However, 
as soon as the user’s knee torque falls outside the 
trigger range, the user is provided with additional 
assistance in proportion to the difference between the 



user’s knee torque and the corresponding trigger’s 
magnitude. Thus, (6) attempts to regulate the user’s 
knee torque to lie within the torque range specified by 
the upper and lower assistance triggers.  

High values of β  would result in rapid changes to 

the assistance provided to the user that would make 
the AD difficult to control. Accordingly, (6) contains 
damping terms that are used to help minimize 
oscillations, and reduce the likelihood of an unstable 
interaction developing between the user and the AD.  

IV. SIMULATION RESULTS AND DISCUSSION 

The primary goal of the simulation experiments 
was to compare the difference between using our AR 
and the muscle amplifying controller described in [6]. 
The user’s impairment was modelled by limiting the 
user’s knee torque to +/-1.5 Nm, while uσ , lσ ,β  and 

α   were set to 1 Nm, -1 Nm, 30 and 7 Nm·s/rad, 
respectively. 

Figures 1 and 2 provide results for large and small 
amplitude knee motions. It is clear from Figure 1 that 
both the muscle amplifying controller and the 
assistance regulator allow the user to track his/her 
desired motion quite easily. However, it is important to 
note that the AR was supposed to regulate the user’s 
knee torque to lie approximately between +/-1 Nm, 
while the muscle amplifying controller gains were 
tuned to maximize muscle effort during the large 
amplitude motion test. Accordingly, the muscle 
amplifying controller provokes more user effort than 
the AR in the large amplitude motion test. However, 
the AR does succeed in helping regulate the user’s 
knee torque to approximately 1.15 Nm after the initial 
transient period.  

Figure 2 provides results for a small amplitude 
motion test conducted using the same controller gains. 
Again, both the AR and muscle amplifying controller 
track the desired motion of the user. In this case, 
however, the muscle amplifying controller provides 
excessive assistance, while the AR maintains the knee 
torque close to the desired value of 1 Nm. These 
results indicate that the AR is capable of regulating the 
desired level of user effort even when there is a drastic 
change in the torque requirements of the activity.   

Higher values of β could be used to reduce the 

steady-state knee torque regulation error. However, 
we note that strict regulation of the user’s knee torque 
is not essential to the fundamental goal of regulating 
the user’s effort as a means of maintaining a sufficient 
exercise intensity level that may help promote 

functional recovery in the long run. Additionally, 
excessively large values of β may result in an unstable 
interaction between the user and the device. 

 

0 1 2 3 4 5 6 7 8
0

20

40

60

80

Lower Leg Orientation

Time (s)

K
n

ee
 a

n
g

le
 (d

eg
)

 

 

Desired trajectory

Assistance regulator
No assistance

Muscle amplifier

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

Knee Torque

Time (s)
K

n
ee

 T
o

rq
u

e 
(N

m
)

 

 

Assistance regulator

No assistance

Muscle amplifier

 

Figure 1: Large Amplitude Knee Motion 
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Figure 2: Small Amplitude Knee Motion 

The sEMG-driven forearm AD controller described 
in [4] is perhaps the only similar AD controller 
designed for active assistance regulation. In [4], the 
reference trajectory of an impedance controller was 
manipulated in order to provide the user with more 
assistance anytime a therapist specified sEMG signal 
threshold was exceeded. Thus, the controller 
regulated user effort in the sense that the user was 
required to provide the effort required to sustain any 
motion whenever this threshold was not exceeded. 



However, the controller did not allow for precise 
regulation of user effort, and was vulnerable to factors 
like muscle co-contraction and the joint angle 
dependence of muscle force. Additionally, another 
drawback of this approach – and of similar approaches 
such as in [13] – was the researchers’ choice to use 
fixed impedance controller gains. 

 Fixed impedance controller gains, like fixed 
amplification gains, are undesirable since they 
generate a fixed input-output relationship between the 
user’s joint torque and angle. Since the user’s joint 
torque capacity remains constant regardless of the 
activity’s torque requirements, low gains will ensure 
sufficient user effort during the completion of one task, 
but the same gains may be insufficient for assisting the 
user in completing a higher intensity task. High gains 
will ensure sufficient assistance during the completion 
of high-intensity tasks, but the same gains will provide 
excessive assistance for low-intensity tasks; the 
performance of the muscle amplifying controller in 
Figures 1 and 2 above is a perfect example of this 
behavior. 

These tradeoffs can be overcome by using 
different gains for different tasks. However, using task-
dependent controller gains introduces its own 
challenges. ADs are usually designed to assist users 
in a wide range of tasks with highly variable torque 
requirements. Thus, simply defining the appropriate 
gains for each task is itself a significant challenge. 
Furthermore, using task-dependent controller gains 
introduces additional control complexity and sensing 
and computation overheard due to the need to identify 
what task the user is performing and which controller 
gains need to be used at any given instant. In contrast, 
the AR presented in this paper avoids these 
challenges because it automatically adapts to the 
torque requirements of the task. As a result, the 
tradeoff between using low and high impedance (or 
amplification gains) is avoided altogether.  

V. CONCLUSIONS AND FUTURE WORK 

Regulating user effort and ensuring sufficient 
exercise intensity are two important factors that can 
aid in facilitating functional recovery. This paper has 
presented a new AD controller designed specifically 
for addressing these two challenges. Unlike the 
muscle amplifying controllers typically used on many 
ADs, simulation results with our proposed controller, 
the assistance regulator, indicated that our controller 
successfully regulated the user’s joint torque with 
small steady-state errors, and automatically adapted to 
the torque requirements of the task. In the future, an 
experimental apparatus currently under development 

will be used to validate the simulation experiments. 
Additionally, these experiments will be used to 
determine how factors such as inaccuracies in joint 
torque estimates and noisy interaction force 
measurements affect the overall performance of the 
controller.  
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