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ABSTRACT 

Mechanical heart valves (MHV) are used to 
replace native valves in patients with various heart 
valve diseases. However, the patients remain at risk of 
blood cell damage, thromboembolic events and 
material failure of the MHV. A phenomenon known as 
cavitation has been identified as a likely cause of a 
series of MHV failures and has been shown in vitro to 
occur near MHVs. It is thought that cavitation damages 
blood components, leading to both clot formation and 
possibly cerebral embolization in MHV patients. A non-
invasive in-vivo technique to quantify the level of 
cavitation present in MHVs would be useful to help 
cardiologists determine the amount of anticoagulant 
medication to prescribe for their patients. Recent work 
has shown some promise towards achieving this goal 
of cavitation quantification by signal processing of 
acoustic measurements of heart sounds.  

In this paper, two algorithms for cavitation 
quantification are investigated for robustness and 
usability. Both algorithms separate the deterministic 
energy from the random (non-deterministic) energy in 
the acoustic signal. However, the energy is calculated 
using different methods. These algorithms are 
investigated for the purposes of determining 
robustness, usability and implementation issues that 
need to be addressed in order to ensure accuracy and 
utility of this approach in a hospital setting. 

INTRODUCTION 

Mechanical heart valves (MHV) are used 
throughout the world to replace native valves in 
patients with heart valve dysfunctions [1]. The issue of 
cavitation was first introduced when damage at MHVs 
was observed. Cavitation has been shown in vitro to 
occur near MHVs in several studies using high-speed 
visualization [2]. Cavitation bubble implosion produces 
high-speed micro jets and high-pressure shock waves 
that can cause mechanical damage to the valve 
structure and blood elements, when it occurs near the 
surface of a MHV. It is thought that this damages 
blood components, leading to both clot formation and 
possibly cerebral embolization in MHV patients [1, 3].  

For in vivo studies, the cavitation near MHVs has 
to be detected acoustically since blood is not a 
transparent fluid. The acoustic evidence of cavitation is 
defined by the high-frequency pressure fluctuations 
(HFPFs) associated with transient bubble collapse [1]. 
These HFPFs can be detected acoustically with the 
use of a high sensitivity hydrophone by applying it on 
the patient’s chest since a hydrophone can record high 
frequency sounds. The sound measured at valve 
closure includes a mechanical resonance component 
coming from the MHV and a cavitation component. To 
obtain the part of the signal that characterizes the 
cavitation, the mechanical resonance component has 
to be removed from the signal. Garrison et al. 
proposed to remove this component from the signal by 
using a high-pass filter [1]. This was the first method 
that could be applied for the in vivo investigation of 
cavitation [2]. Recently, Johansen et al. determined 
that different designs of MHVs had different closing-
sound characteristics implying that a priori knowledge 
of the valve mechanical resonance was required to 
choose the cut-off frequency of the high-pass filter [1, 
2]. Consequently, Johansen et al. proposed a different 
approach which was to decompose the cavitation and 
valve mechanical resonance components by 
separating the HFPF signal into a deterministic and a 
non-deterministic part. They suggested that the 
cavitation bubble implosion creates random (non-
deterministic) pressure fluctuations since the number 
and size of bubbles varies from beat to beat. Also, 
they assumed that the mechanical resonance 
occurring at valve closure is deterministic since valve 
closure is cyclic [1]. 

In this paper, two methods proposed by Johansen 
are implemented and analyzed to determine their 
robustness, usability and implementation issues. In 
addition, recommendations are provided to improve 
the accuracy and utility of the algorithms. 

METHODOLOGY 

It has been suggested in [2] and [4] by Johansen 
and colleagues that the cavitation can be quantified by 
separating the acoustic pressure signal into 
deterministic and non-deterministic components. The 
deterministic component represents the valve closing 



sound. The non-deterministic component is the 
information of interest since it contains the signal 
information originating from cavitation. Johansen’s 
algorithm suggested that the non-deterministic energy 
can be obtained by subtracting the deterministic 
energy from the total energy [2, 4]. 
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where Enon-det represents the non-deterministic signal 
energy, Etotal represents the total signal energy and 
Edet represents the deterministic signal energy. 

Calculation of the deterministic energy 

The first step consists of finding the deterministic 
energy. It is found the same way in both [2] and [4]. It 
is defined as 
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where N is the number of samples, fs is the sampling 

frequency, pea[n] is the ensemble average, and F  is 
the Fourier transform. The ensemble average is 
calculated according to 
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where HC is the number of heart beats measured, and 
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beat of the pressure signal. 

In order to obtain the ensemble average of the 
heart beats, the starting point of each heart beat needs 
to be known. To obtain that value, the original signal is 
segmented at the beginning of each heart beat using 
the method suggested in [5]. Then, each heart beat is 
truncated for all beats to have the same length. The 
end part of the beats is truncated since no important 
information is located there. The truncated heart beats 
are then superimposed one over the other and then 
averaged to obtain an average heart beat signal. This 
eliminates unwanted noise as well as reduces the 
signal parts that do not repeat from beat to beat. 
Finally, the energy is calculated from the energy 
density spectrum to obtain the deterministic energy. 

Calculation of the total energy (Method 1) 

The second step consists of determining the total 
energy. It is calculated according to 
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where Ai(f) is the amplitude spectrum squared of the i
th
 

heart beat [2]. 

As in the previous sub-section, the signal is 
segmented at the beginning of each heart beat 
followed by the truncation of each beat to make them 
the same length. Then, the energy density spectrum is 
determined for each heart beat. Finally, the energy is 
calculated from each energy density spectrum signal 
followed by a calculation of the mean energy 
representing the total energy. 

Figure 1: Non-deterministic energy block diagram 
using method 1 

The final step consists of subtracting the 
deterministic energy from the total energy to obtain the 
non-deterministic energy, as stated in equation (1). 
Figure 1 is a block diagram summarizing Johansen’s 
algorithm using method 1 to find the total energy [2]. 
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Calculation of the total energy (Method 2) 

It has been suggested in [4] that the total energy 
of the signal can be calculated from the energy density 
spectrum of the raw data 
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where G(f) is the amplitude spectrum squared of the 
raw data (output of the hydrophone). Figure 2 
represents the block diagram summarizing Johansen’s 
algorithm using method 2 to find the total energy [4]. 

Segmentation algorithm 

As stated in the first sub-section, the original 
hydrophone signal is segmented to superimpose the 
heart beats in order to determine the ensemble 
average of the beats. The segmentation algorithm 
proposed in [2] and [4] was a cross-correlation of each 
heart beat with a chosen template to line up the heart 
beats. That segmentation algorithm was implemented; 
however, the results could not be reproduced. Other 
heart sound segmentation methods have been 
introduced using techniques such as the wavelet 
transform [6, 7], Shannon energy [6-8], mel-frequency 
cepstral coefficients (MFCC) [6, 9], and the mel-scaled 
wavelet transform (MSWT) [9]. 

The segmentation algorithm used in this paper is 
the method suggested in [5], using the wavelet 
transform and Shannon energy techniques in 
combination with the heart rate approximation to 
identify the first heart sound component S1. 

IMPLEMENTATION AND DISCUSSION 

The results in this paper were obtained by testing the 
algorithms on a pre-recorded stethoscope test signal. 
That signal was chosen since it was less noisy than all 
other signals and because a stethoscope signal should 
not contain a cavitation component since it records low 
frequency sounds. This means that the non-
deterministic energy result should theoretically be near 
zero. A sampling frequency of 44.1 kHz was used. 

The results obtained using the two methods 
introduced previously are compared in table 1. 

The results in table 1 show that the non-
deterministic energy is not zero. This is due in part to 
signal noise which is random and thus contributes to 
the non-deterministic energy. Some other factors 
making the non-deterministic energy non-zero come 
into play and are explained below. 

 

 

Figure 2: Non-deterministic energy block diagram 
using method 2 

Table 1: Results of the energy obtained with the two 
methods 

Energy Method 
used 

Deterministic 
energy [V

2
] 

Total energy 
[V

2
] 

Non-
deterministic 
energy [V

2
] 

Method 1 [2] 1.2998*10
7
 3.9394*10

7
 2.6396*10

7
 

Method 2 [4] 1.2998*10
7
 8.3905*10

8
 8.2605*10

8
 

Truncation of the heart beats 

The two different methods of determining the non-
deterministic energy presented previously appear to 
be the same, but they are theoretically different. The 
first method of calculating the total energy truncates 
the heart beats as for the deterministic energy 
calculation. Therefore, the heart beats are the same 
length for both the total energy and the deterministic 
energy. However, in the second method of calculating 
the total energy, the original hydrophone signal is used 
and not the truncated signal. Thus the truncated 

Hydrophone 

signal

Segmentation 

and truncation

Data is 

superimposed

Ensemble average 

calculated in time 
domain

Energy density 

spectrum

Deterministic signal 

energy (Edet)

Etot-Edet

Non-deterministic 

signal energy
(Enon-det)

Energy density 

spectrum

Total signal 

energy (Etot)

 



portions of the signal are retained for the total energy 
calculation resulting in a larger value of total energy. 
This implies that the non-truncated portions of the 
signal contribute to the non-deterministic energy and 
are falsely considered to be cavitation. As a result, it is 
observed in table 1 that the non-deterministic energy 
calculated with method 2 is larger than that calculated 
with method 1. From this observation, one can 
conclude that method 1 is better than method 2. 

Superimposition of the heart beats 

The quality of the segmentation of the hydrophone 
signal has a large impact on how well the heart beats 
are superimposed. If the segmentation is poorly done, 
the heart beats will not line up properly. 

Figure 3 illustrates the superimposed heart beats 
for the heart signal used to obtain the results in table 
1. 

Figure 3: Superimposed heart beats 

The arrow in figure 3 points to the heart beats that 
were not properly lined up with the other beats. They 
would need to be shifted to the right to be lined up. 
These misplaced beats have an impact on the energy 
results. To demonstrate the impact, the beats that did 
not line up with the other beats were manually 
removed from the signal and the results obtained are 
shown in table 2. 

Table 2: Results of the energy obtained after manually 
removing the misplaced beats 

Energy Method 
used 

Deterministic 
energy [V

2
] 

Total energy 
[V

2
] 

Non-
deterministic 
energy [V

2
] 

Method 1 [2] 1.5989*10
7
 3.3056*10

7
 1.7067*10

7
 

Method 2 [4] 1.5989*10
7
 8.3905*10

8
 8.2306*10

8
 

 

As expected, the non-deterministic energy 
decreased which confirms that the poorly lined up 
beats have an impact on the results. Johansen’s 
algorithm is thus very sensitive to the lining up issues 
and greatly depends on the quality of the 
segmentation algorithm. It is noted again that the non-
deterministic energy calculated with method 2 is larger 
than that calculated with method 1, confirming the 
earlier observation. 

CONCLUSION AND FUTURE WORK 

This paper compared Johansen’s two algorithms 
and the results showed that the first method, illustrated 
in figure 1, is more robust and accurate than the 
second method. However, this method still requires 
improvements. The algorithm implementation 
demonstrated that it is very sensitive to the lining up 
issues. Future implementation of an algorithm that 
determines the quality of the input heart signals could 
lead to better segmentation results since a cleaner 
signal is easier to segment than a noisy one. In 
addition, to further improve the accuracy of the 
cavitation quantification algorithm, an algorithm to 
remove or shift the misplaced heart beats is of interest. 

REFERENCES 

[1] P. Johansen, "Mechanical heart valve cavitation," Expert 
Review of Medical Devices, vol. 1, pp. 95-104, 2004. 
[2] P. Johansen, T. S. Andersen, J. M. Hasenkam, and H. 
Nygaard, "In-vivo prediction of cavitation near a Medtronic Hall 
valve," The Journal of heart valve disease, vol. 13, pp. 651-658, 
2004. 
[3] R. A. Rodriguez, M. Ruel, M. Labrosse, and T. Mesana, 
"Transcranial Doppler and acoustic pressure fluctuations for the 
assessment of cavitation and thromboembolism in patients with 
mechanical heart valves," Interactive Cardiovascular and Thoracic 
Surgery, vol. 7, pp. 179-183, 2008. 
[4] P. Johansen, K. B. Manning, J. M. Tarbell, A. A. Fontaine, 
S. Deutsch, and H. Nygaard, "A New Method for Evaluation of 
Cavitation Near Mechanical Heart Valves," Journal of Biomechanical 
Engineering, vol. 125, pp. 663-670, 2003. 
[5] K. Courtemanche, V. Millette, and N. Baddour, "Heart 
sound segmentation based on mel-scaled wavelet transform," in The 
Canadian Medical and Biological Engineering Society Montreal, 
Quebec, Canada, 2008. 
[6] D. Kumar, P. Carvalho, M. Antunes, P. Gil, J. Henriques, 
and L. Eugénio, "A new algorithm for detection of S1 and S2 heart 
sounds," in ICASSP, IEEE International Conference on Acoustics, 
Speech and Signal Processing - Proceedings, Toulouse, 2006. 
[7] P. Wang, Y. Kim, L. H. Ling, and C. B. Soh, "First heart 
sound detection for phonocardiogram segmentation," in Annual 
International Conference of the IEEE Engineering in Medicine and 
Biology - Proceedings, Shanghai, 2005, pp. 5519-5522. 
[8] H. Liang, H. Liang, S. Lukkarinen, and I. Hartimo, "Heart 
sound segmentation algorithm based on heart sound envelogram," 
in Computers in Cardiology 1997, 1997, pp. 105-108. 
[9] P. Wang, Y. Kim, and C. B. Soh, "Feature extraction 
based on mel-scaled wavelet transform for heart sound analysis," in 
Annual International Conference of the IEEE Engineering in 
Medicine and Biology - Proceedings, Shanghai, 2005, pp. 7572-
7575. 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Aligned and truncated segments of the signal

Time (s)  


