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INTRODUCTION 

The quantification of cerebral blood flow (CBF) in patients 
suffering from ischemic stroke will likely become a key 
clinical tool for assessing their prognosis. By its very de-
finition, ischemic stroke represents a reduction of blood 
flow (ischemia) to a region of brain tissue, most com-
monly due to a blocked vessel. Magnetic resonance 
(MR) perfusion imaging can provide estimates of CBF by 
monitoring the passage of a gadolinium-based contrast 
agent as it travels through the cerebral vascular system 
over time.[1,2] During contrast passage, images are ga-
thered every 1 s to 2 s over a period of 60 s to 90 s. 
From these images a signal intensity time series can be 
constructed for each image voxel. Measured signal in-
tensity decreases as the contrast agent passes with a 
logarithmic relationship relating concentration of the 
tracer (C�t�) and intensity (S�t�), 
 C�t�∝ -ln 
S�t�S0 �,                          (1) 

 
where S� is the initial MR signal intensity before contrast 
agent arrival. Eq (1) represents the fundamental rela-
tionship that relates signal intensity in a voxel to concen-
tration of contrast agent. 
 The relationship between concentration and CBF is 
well established in MR perfusion. If an arterial concentra-
tion function, C��t�, is selected from an artery supplying 
blood to the brain, then CBF can be calculated in a tissue 
volume-of-interest �VOI), C����t�, 
 C����t� = CBF ∗ R�t� ⊗ C��t�,            (2) 

 
where R�t� represents the tissue residue function or the 
normalized system response that has a peak of 1.[1-3] 
From Eq (2), CBF can be estimated by performing de-
convolution. Traditionally this has been performed in the 
time domain using the matrix formulation, 
 ���� = �  !′                               (3) 
and, CBF = max& !' (,                           (4) 
 

where R' = CBF ∗ R and the continuous time function has 
been discretised, such that; 

) C���*0+C���*1+. . .C���*N − 1+0 = 1 C�*0+ C�*N − 1+   …    C�*1+   C�*1+ C�*0+  …    C�*2+  …C�*N − 1+ …C�*N − 2+  …        …     …     C�*0+ 4 

1 R′*0+R′*1+…R′*N − 1+4.          (4) 

 
The maximum of the !′ vector is the CBF estimate. This 
process requires inversion of � , which in the presence 
of noise is a process that can be unstable. Singular val-
ue decomposition (SVD) is often used to stabilize the 
inversion process. In SVD the matrix �  is divided into 
three separate matrices, 
 � =  5 6 �7.                               (5) 
 
After decomposition, the diagonal matrix 6 contains the 
normalized Eigen values of � . The superscript T de-
notes transpose. The inverse of �  can be found by,    
 � 9: =  � ;diag 
 ?@A�B 5C.                      (6) 

 
To ensure stability, Eigen values (ωE) below a certain 
threshold are removed. In practice the threshold value is PG�H= 0.2, or 20% of the largest Eigen value.[4] 
  Alternatively, deconvolution can be performed by 
division in the frequency domain,  
 R′�t� = I9? JKLMN�O�KP�O� Q                          (7) 

and, 
  CBF = max& R'�t� (,                         (8) 

 
where C��R� and C����R� are the Fourier transforms (FT) 
of C��t� and C����t�, respectively. Fourier deconvolution 
is itself not stable and requires low-pass filtering to re-
move instabilities often found at higher frequencies. 
 Salluzzi et al. [5] demonstrated the similarities be-
tween the SVD and FT deconvolution approaches; most 
notably elucidating the relationship between PG�H and the 
low-pass filter applied to the frequency domain data,  
 wT = J  1 |C��R�| < PG�H ∗  |C��R�|W�X0 … Y.           (9) 

 



This expression agrees with the notion of relating Eigen 
values asymptotically to Fourier transform coefficients.[6] 

THEORY 

The function C� may be approximated as a normalized 
gamma-variate function, 
 C��t� ≅  [  K\P] �^97_�` ab�cbd_�/f�gh�` a` t > Tj0 … Y ,           (10) 

 
where α and β are constants, generally set to 3 and    
1.5 s, respectively,[5] Tj represents the arrival time of 
the contrast agent, and CW�X is the maximum value of 
the concentration function. Most commonly the residue 
function is approximated as an exponential decay,[4,5] 
 R�t� ≅ e9�^9j7H�/n77,                      (11) 
 
with MTT being the mean transit time and ATD, the ar-
terial-tissue delay. MTT is the average time for the con-
trast agent to pass through the tissue. To find C����t�, we 
performed the numeric convolution of Eq (2). 

Noise in MR applications has a Gaussian distribution 
when added separately to the in-phase and quadrature 
signals. The non-linearity of Eq (1) results in non-
Gaussian noise on concentration signals,[3] as the loga-
rithmic function makes the noise variance dependant on 
the amplitude of the concentration function. This non-
linear noise behavior, combined with the deconvolution 
creates instabilities in the residue function (Fig 1). 
 The need for filtering or thresholding to regain sta-
bility should be clear from Fig 1. However, this filter also 
removes high-frequency components of R′�t�, resulting 
in a misrepresentation of the R′�t� peak, and thus intro-
ducing model-based errors into CBF. This error is relative 
to the width of R�t�: as the signal becomes shorter in 
time it becomes broader in frequency, leading the filter to 
remove more of the signal. This effect is dependant on 
the amount of filtering or threshold value (Fig 2). As PG�H 
increases, more of the corresponding signal is removed, 
resulting in more model-based error. 
 
By reintroducing or recovering this high-frequency infor-
mation through simple linear extrapolation algorithms, 
we expect that a better estimate of rst can be obtained.  

METHODS 

Simulations 
A simple linear approach was used for extrapolation. 
More sophisticated techniques, such as the auto-
regressive moving average (ARMA)[7]  were considered, 
but were found to be not well suited for this application, 
principally due to the small number of points available 
and the large distance that needed to be extrapolated. 
With simple linear extrapolation, the signal is drawn from 
the last non-filtered point down to a value of zero at 
some distance (ℓ) away. This process is best illustrated 
in the frequency domain and must be done for both the 
real and imaginary components, as depicted in Fig 3.  
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Figure 1: The magnitude of the residue function frequency spectrum is 
depicted.  The signal is obtained by deconvolving the arterial and vo-
lume-of-interest functions (MTT and ATD of 8 s and 0.01 s, respective-
ly). Gaussian noise was added to the MR signal intensity with va-
riances of 0, 15 and 30 on an initial signal intensity of v� = 1000, 
(vwx = v�/yz�. High-frequency noise effects increased with increasing 
noise variance of the MR signal intensity.  
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Figure 2: With increasing PG�H more high frequency signals are re-
moved from R′�t�. This in turn causes an expected error in the peak of 
the R′�t�, which is dependent on the width of the signal in time: As MTT 

decreases, the signal becomes broader in the frequency domain and 
more signal energy is removed, thus resulting in more error. The MTT 

ranges indicate normal, penumbral (potentially recoverable with proper 
treatment) and infarcted (unlikely to recover) tissues. 

 Determination of the distance over which extrapola-
tion should be performed initially seemed problematic. 
Intuitively, as MTT becomes larger, R′�t� becomes nar-
rower and taller in the frequency domain. Thus for longer MTT extrapolation over a shorter distance should be ex-
pected. Closer examination and manipulation of Eq. (11) 
suggested: 
 R�R� ≅  ab{|}~ _d���dd� ���T,                         (12) 

where, R�R� ≅ MTT  ;   R = 0.                          (13) 
 
This manipulation suggested that the height of R�R� at R = 0 can estimate MTT. 
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Figure 3: Real (A) and imaginary (B) components, of the residue func-
tion in the frequency domain. The filtered data corresponds to the data 
that is left after the high frequencies have been removed. The extrapo-
lated data represents the data that has been estimated linearly from 
the last unfiltered point to zero at a distance ℓ away. 

Letting, ℓ =  �n77 ,                                (14) 

 
where � is an arbitrary constant. Different responses for 
extrapolation can be obtained by changing the value of �. We examined 20 s  < � < 60 s. 

Patient Data 
MR perfusion image data sets were analyzed. Arterial 
input functions were selected from individual pixels 
based on signal characteristics and anatomical location. 
The simple extrapolation method was used to recover 
SVD-thresholded data. As per convention, the results 
were cross-calibrated so that normal white matter had a CBF of 22 ml / 100 g / min. 
 Throughout this study, MATLAB was used, for all 
simulation and image reconstructions. In addition, testing 
software, MUnit, was used to improve the robustness of 
algorithms. This development platform allowed for spee-
dy, robust prototyping. 

RESULTS 

Simulations 
The CBF measured over CBF true versus MTT plots were 
obtained using a noiseless simulation to determine an 
appropriate extrapolation constant (Fig 4). � was chosen 
to be 60, as this value caused CBF to behave independ- 

 
Figure 4: For PG�H = 0.2; the measured/true CBF ratio is plotted against MTT, for signals with no extrapolation and with extrapolation. Extrapo-
lation was performed for � = 20 s, 40 s and 60 s; these correspond to 
extrapolation distances ℓ = �/MTT as per Eq (14). 
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Figure 5: � = 60 s was used for extrapolation in a Monte Carlo simula-
tion and compared with no extrapolation, Gaussian noise has was 
added to MR signal intensity (S0 = 1000, yz� = 20). The error bars 
represent 2 standard deviations. 

 
ently of MTT over the practical range of normal and in-
fracted tissues (3 s < MTT < 20 s). Monte Carlo simula-
tions, with noise, were undertaken to ensure the algo-
rithm was stable (Fig 5). The improved accuracy (CBF 
ratio ~ 1.0) was demonstrated. As expected the extrapo-
lated measures were less precise. 

Patient Data 
A patient data was selected with a moderate stroke and 
processed (Fig 6). The time-to-peak (TTP) map showed 
a blood flow abnormality.(Fig 6a, arrow) Deconvolution 
was performed using both the filtered and simple extra-
polation methods. In both cases the same pixels were 
chosen for the arterial function and for cross-calibration. 
Qualitatively, the extrapolation technique (Fig 6c) better 
depicts the blood flow abnormality identified in the TTP 
map. The difference image (Fig 6d) showed us the nu-
merical difference between the two techniques, it should 
be noted that the difference map almost uniformly re-
moves image intensity. This can be thought of as an
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Figure 6: Image (A) represents time-to-peak (TTP) map of the concen-
tration of tracer showing an area with delayed filling (arrow). (B) is a CBF map obtained by performing a Fourier-domain deconvolution, 
filtering and cross calibrating. (C) is a CBF map obtained by Fourier-
domain deconvolution, filtering, extrapolation (with � = 60 s), and then 
cross calibrating. (D) is the difference map between (B) and (C). The 
stroke region (arrow) is better defined in C then in B. 

improvement in contrast, under the definition, 
 Contrast = | ��c���� 9 ����\P� |��c���� � ����\P�  .                 (15) 

 
The difference remains the same, however the ampli-
tudes are decreased. 

CONCLUSION 

While it is intuitive to think that information representing 
blood flow can be obtained from the passage of contrast 
agent; in practice the best way to process this informa-
tion is not obvious. Here, we have presented a model-
specific data extrapolation technique and compared re-
sults with conventional approaches. From Fig 6c, we see 
an increase of noise in the image. This agrees with si-
mulation results as there is an increase of noise in 
healthy tissue. Further investigation of patient data and 
refinements in processing and modeling, such as pre-
servation of continuity,[8] will no doubt lead to improve-
ments in estimates. More reliable information about 
blood flow results in better assessment of penumbral 
and infarcted tissue. 
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