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ABSTRACT-  In the literature, it has been shown that 
the  severity  of  Carpal  Tunnel  Syndrome  (CTS)  and 
other peripheral neuropathies depend on the condition 
of  both slow and fast  conducting fibres present  in a 
nerve.  In  this  context,  it  has  become  important  to 
estimate the conduction velocity distribution (CVD) of 
both  slow  and  fast  fibres.  In  the  proposed  paper, 
compound  nerve  action  potentials  (CNAPs)  are 
simulated and two different approaches that are based 
on  the  inverse  problem  formalism  are  used  for 
estimating the CVD of nerve fibres. The first approach 
is  concerned  with  the  estimation  of  CVD  of  fast 
conducting  fibres  and  the  second  approach  is 
concerned  with  the  estimation  of  CVD  of  slow 
conducting  fibres.  The  performance  of  the  CVD 
estimator is measured at different signal to noise ratios 
(SNRs) when random noises are added to the CNAPs. 
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I. INTRODUCTION 

In  the  literature,  it  has  been  shown  that  the 
severity of Carpal Tunnel syndrome (CTS) advances 
from  large  myelinated  nerve  fibres  to  small  nerve 
fibres  [1].  It  is  also  shown  in  literature  that  A-delta 
fibres have a conduction velocity (CV) in the range 2 – 
30 m/s and these are responsible for the sensation of 
cold and pain [1]. It is also shown in literature that an 
average sensory CV of 45 m/s or less suggests the 
presence of CTS [1]. As the severity of CTS and other 
peripheral  neuropathies  advances,  a  significant 
number  of  nerve  fibres  are  slowed  due  to 
demyelination effect. Because of this effect, it is very 
important to know the conduction velocity distribution 
(CVD) of both slow and fast fibres.

In  this  paper,  a  technique  is  presented  which 
estimates the delay distribution as well as the CVD of 
both slow and fast conducting fibres within a nerve. A 
bimodal  distribution  of  conduction  velocities  is 
assumed  for  simulating  compound  nerve  action 
potentials  (CNAPs).  After  the CNAPs are simulated, 
two different mathematical approaches that are based 
on  inverse  problem formalism  are  used  to  build  an 

estimator which estimates the CVD of nerve fibres [2]. 
The first approach is concerned with the estimation of 
delay  distribution  of  fast  conducting  fibres  whose 
conduction velocities lie in the range of 35 – 80 m/s. 
These  fibres  contribute  to  the  main  complex  of  the 
CNAP  wave-shape.  The  second  approach  is 
concerned with the estimation of the delay distribution 
of slow conducting fibres whose conduction velocities 
lie in the range of 5 – 30 m/s. These fibres contribute 
to the late components of the CNAP wave-shape. The 
overall CVD of all the active fibres is obtained from the 
estimated  delay  distributions.  A  mean  square  error 
(MSE) is used for evaluating the performance of the 
estimator when different levels of noise are added to 
the simulated CNAPs.

II. THEORETICAL BACKGROUND

The estimation of CVD of nerve fibres is obtained 
in two parts. The first part deals with the estimation of 
CVD of fast conducting fibres that are contributing to 
the main complex of CNAP and it uses a least square 
optimization technique for estimating the CVD of fast 
fibres.  The second part  deals  with  the estimation of 
CVD of  slow conducting fibres that contribute to the 
small late components of the CNAP. It uses a single 
realization of a non-stationary Poisson process. Here, 
the CNAP is defined to be a filtered Poisson process 
where  the  time-varying  filter  represents  the  Surface 
Single  Fibre  Action  Potential  (SSFAP)  wave-shapes 
[2].  In  both  parts  of  the  estimation  procedure,  the 
description of the wave-shape of the SSFAP is derived 
from a mathematical  formulation  given  in  [3]  and  is 
time scaled as described in [4].

The theoretical model for CNAP is obtained as a 
linear  summation  of  Surface  Single  Fibre  Action 
Potentials (SSFAPs) [4]. Hence, the CNAP is given by
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where  ( )dtCNAP ,  represents CNAP as a function 

of  time,  ( )iii vtSSFAP ;τ−  represents  SSFAP 

associated with  a  fibre  with  propagation velocity iv , 



iτ  represents  delay  associated  with  propagation 

velocity  iv  and  propagation  distance d ,  and  N  
represents the total number of active fibres. 

      The inverse mathematical formalism for estimating 
delay distribution of nerve fibres is based on following 
equation:

( ) ( ) ( )∑
=

−=
N

i
iiii vtSSFAPdadtCNAP

1

;;, ττ
(2)

where  ( )da i ;τ  represents  the  delay  distribution 

associated  with  propagation  distance d .  The  delay 
distribution  can  be  obtained  using  the  following 
equation:

CNAPSSFAPDISTDELAY 1_ −= (3)

where DISTDELAY _ is a vector representing elements 

of delay distribution, SSFAP  is a matrix representing 
elements  of  Surface  Single  Fibre  Action  Potentials, 
and  CNAP  is  a  vector  representing  elements  of 
Compound Nerve Action Potentials.

III. METHODOLOGY

Simulation

      A bimodal distribution of conduction velocities is 
assumed for simulating CNAPs [5]. The CVD assumed 
resembles  a  pathological  condition  where  fast 
conductive  fibres  are  severely  damaged.  A  total  of 
3000  fibres  have  been  selected  for  generating  the 
bimodal distribution. About 60% of the total number of 
fibres is assigned to slow conducting fibres and 40% of 
the  total  number  of  fibres  is  assigned  to  fast 
conducting fibres.  The first  normal distribution has a 
mean of 15 m/s with a standard deviation of 3 m/s and 
the second normal distribution has a mean of 55 m/s 
with a standard deviation of 6 m/s (see Figure 1).

      Ten CNAPs, each having duration of 50 msec, are 
generated  from the  above  bimodal  distribution.  The 
SSFAPs are generated by convolving a second order 
derivative of signal source with a tissue filter impulse 
response.  The  signal  source  is  obtained  from  the 
mathematical  formulation  given  in  [3]  and  is  time 
scaled  as  described  in  [4].  The  tissue  filter  impulse 
response used is described in [4].

Algorithm Implementation

      The steps that are involved in the algorithm for 
developing  the  estimator  for  estimating  the  CVD of 
nerve fibres are as follows:

1. A CVD of bimodal nature is assumed for 
simulating CNAPs. SSFAPs are obtained 
as a result of convolution of second order 
derivative  of  temporal  representation  of 
source  with  a  tissue  filter  impulse 
response.

2. The  delay  distribution  of  fast  conducting 
fibres is obtained by minimizing a function 

2
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constraint  given  by ( ) 0;1 ≥da nτ .  Here, 

P  is  a  301000×  matrix representing 
SSFAPs  with  elements  given  by
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minimization problem is solved by using a 
non-negative  least  squares  estimation 
subroutine given in MATLAB 7.0.1.

3. The delay distribution of slow conducting 
fibres is obtained by minimizing a function 

2

22 yQa −  subject  to  the  non-

negativity  constraint  given  by

( ) 0;2 ≥da nτ .  Here,  Q  is  a 

301000×  matrix  representing  squared 
SSFAPs  with  elements  given  by 

( )nnmmn vtSSFAPQ ;2 τ−= ,  2a  is  a 

130×  vector  representing the intensity 
of the Poisson process realization of the 
delay distribution of slow conducting fibres 

with elements given by ( )jaa
j

τ22 = , and 

2y  is  a  11000×  vector  representing 
variance  of   non-stationary  Poisson 
process  realizations  of  CNAPs  with 

elements given by  ( )dtyy mm
;22 = . The 

above minimization problem is solved by 
using  a  non-negative  least  squares 
estimation  subroutine  given  in  MATLAB 
7.0.1.

4. The CVD is obtained from the above delay 
distributions  using  the  equation 
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velocity  probability  distribution  function, 



)(tf a  is the delay distribution, d is the 

propagation  distance,  and  v  is  the 
corresponding velocity  of  propagation  as 
described in [4]

5. Before applying step 3 and 4, a selection 
of conduction velocity range is made. For 
slow conducting fibres, a range is selected 
between  5  and  35  m/s,  and  for  fast 
conducting  fibres,  a  range  is  selected 
between 30 and 80 m/s.

IV. RESULTS AND DISCUSSION

Simulation Results

The  following  three  plots  display  the  assumed 
CVD of nerve fibres, the SSFAP at different velocities 
and the averaged CNAP simulated from the CVD.
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Figure1. Assumed CVD
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Figure2. Simulated Avg. CNAP at ∞=SNR

Figure  1  displays  a  histogram  representation  of 
bimodal distribution of nerve conduction velocities. X-
axis represents the conduction velocities of nerves and 
Y-axis  represents  the  number  of  active  fibres.  The 
mean  and  the  standard  deviation  of  Gaussian 
distribution of slow conducting nerve fibres are 15 m/s 
and  3  m/s  respectively  whereas  the  mean  and 
standard  deviation  of  Gaussian  distribution  of  fast 
conducting  nerve  fibres  are  55  m/s  and  6  m/s 
respectively.  Figure  2  displays  an  averaged  CNAP 

with X-axis representing the time in millisecond and Y-
axis representing the amplitude.

The  solid  line  and  the  broken  line  in  Figure  3 
display the assumed CVD and the estimated CVD of 
all  the  conducting  nerve  fibres  respectively  at

∞=SNR .  Figure  4  displays  simulated  CNAP  in 
presence  of  Gaussian  noise  at  .50=SNR  X-axis 
represents time in millisecond and Y-axis represents 
amplitude of the CNAP in presence of noise. The solid 
line  and  the  broken  line  in  Figure  5  display  the 
assumed CVD and the estimated CVD of all the nerve 
fibres respectively at 50=SNR .
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       Figure3. Assumed CVD Vs Est. CVD at SNR = 
∞
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      Figure4. Simulated Avg. CNAP at 50=SNR
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      Figure5. Assumed CVD Vs Est. CVD at SNR = 50

Performance Measure



      Simulations are run to evaluate the performance of 
the CVD estimator when random noise is added to the 
CNAP.  The  SNR  is  obtained  by  dividing  the  peak 
value of the averaged CNAP by the standard deviation 
of noise.

       The  performance  of  the  CVD  estimator  is 
measured in terms of mean square error (MSE). The 
MSE is calculated between the assumed CVD and the 
estimated  CVD  of  all  the  nerve  fibres  using  the 
following equation:
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Table 1: SNR Vs Mean Square Error

SNR MSE

1. Infinity 0.3088

2. 50 0.3247

3. 20 0.6781

4. 10 0.7774

5. 5 0.8954

Table  1  displays  different  SNRs  and 
corresponding  mean  square  errors  (MSEs)  between 
assumed CVD and estimated CVDs at different levels 
of noise. It can be seen from Table 1 that as SNR is 
decreased from infinity to 5, the corresponding MSE 
values increase. It is also observed that when the SNR 
is  decreased  below  5,  the  CVD  estimator  had  a 
difficulty  in  estimating  the  CVD  of  slow  conducting 
nerve fibres.

V. CONCLUSIONS

It is concluded that the CVD estimator developed 
in this paper can estimate CVD of both slow and fast 
conducting fibres when a CNAP is available as input to 
the estimator. Since the mean square errors (MSEs) 
between  the  assumed  CVD  and  the  estimated 
conduction  velocity  distributions  (CVDs)  at  different 
signal to noise ratios (SNRs) are very less, it can be 
concluded that  the CVD estimator  developed in  this 
paper  can  reliably  estimate  CVD  of  very  slow 
conducting  fibres  (5  –  30  m/s).  The  estimator 
developed in this paper can be used to estimate CVD 
of nerve fibres whose conduction velocities lie in the 
range 0.5 – 100 m/s. 

The estimated CVD may be used by clinicians to 
obtain  information  about  the  condition  and 

characteristic  of  nerve  fibres  and the information so 
obtained may be further used by clinicians in order to 
diagnose different stages of peripheral neuropathies.
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