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Electrical alternans is a physiological phenomenon manifested as beat-to-beat oscillation in cardiac
action potential duration which has been shown to be a precursor to arrhythmias and sudden
cardiac death. The majority of the existing control algorithms succeeded in suppressing alternans
only in small pieces of cardiac cells. In this work, we will explore the feasibility of suppressing
cardiac alternans in a realistic electromechanical model of relevantly sized cardiac tissue by using
the mechanical perturbation strategy. The electrical activity is represented by the Luo-Rudy model,
and the mechanical activity is represented by the Niederer-Hunter-Smith active contractile tension
model and the Mooney-Rivlin passive elasticity model.

I. INTRODUCTION

Electrical alternans is a perturbation in the heart
rhythm manifested as beat-to-beat oscillation (electric
wave width alternation) of the cardiac Action Potential
Duration (APD)[1]. Alternans have been shown to be
a precursor to arrhythmias [2, 3] and sudden cardiac
death (SCD), which is the most common cause of death
in the industrialized world. APD alternans, is observed
experimentally at high pacing rate so that beyond a
critical pacing frequency the normally periodic response
is replaced by a sequence of long and short APDs which
is manifested as a variation in the width of action
potential (see Fig. 1), the APD is the period of time
during which the action potential exceeds the threshold
value while the diastolic time interval (DI) in Fig.1 is
defined as the period of time during which the action
potential is below the given threshold value.

FIG. 1: Time evolution of transmembrane potential in
the presence of alternans.

Many control algorithms have been developed to sup-
press alternans in cardiac tissue. However, most of these
algorithms have only proved effectiveness for control-
ling electrical alternans in small tissues [4–7], up to 2.5

cm. In addition, to the authors’ best knowledge, all
the electric-based realization algorithms have not con-
sidered mechanical properties of cardiac tissue, despite
the fact that mechanical deformation is shown to influ-
ence electrical activity of the heart tissue, and conse-
quently the cardiac alternans. In fact, the propagation
of action potentials in cardiac tissue initiate mechanical
contraction via excitation-contraction coupling (ECC),
while changes in tissue length due to contraction af-
fect electrophysiological properties via mechanoelectrical
feedback (MEF) [8, 9].

We [10] recently presented a novel mechanical pertur-
bation algorithm to control alternans. The proposed al-
gorithm succeeds to suppress cardiac alternans in rele-
vantly sized cardiac tissues. However, in that study, we
used a simple phenomenological model of cardiac exci-
tation, and active tension was generated using an over-
simplified isotropic active tension transient. Therefore,
a more realistic electromechanical model of cardiac tis-
sue should be used to investigate the control of alternans
which is the goal of this study.

In this work, we will explore the feasibility of suppress-
ing cardiac alternans in a realistic model by using the
mechanical perturbation strategy. The electrical activity
is represented by the Luo-Rudy [11] model, and the me-
chanical properties is described using the Mooney-Rivlin
material response [10, 12]. The active tension that cou-
ples the electrophysiological model with the cardiac me-
chanics model is generated using the Niederer-Hunter-
Smith [13] model which is the most advanced model,
including all features contained in other models. Nu-
merical simulations are presented to demonstrate that a
model based on the mechanical and electrophysiological
properties of cardiac tissue can be used to successfully
suppress alternans in relevantly sized cardiac tissues.
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II. MATHEMATICAL MODEL

We describe separately mathematical models of the
cardiac mechanics and electrophysiology for an elec-
tromechanical model of cardiac tissue, and then describe
a model that is used to couple these components via the
generation of active tensions.

Cardiac Mechanics

To model deformation of the cardiac tissue, the me-
chanical analysis was based on finite deformation elas-
ticity theory. The equilibrium equations as described
in [10, 12], derived using Newton’s laws of motion, are
solved numerically to determine the mechanical defor-
mation. The resulting equations are expressed as:

∂

∂XM
(SMNFjN ) = 0 (1)

where FjN = (∂xj/∂XM ) is the deformation gradient
tensor, XM are the reference (undeformed) coordinates,
xi are the material (deformed) coordinates, SMN is the
second Piola-Kirchhoff stress tensor which is split into a
passive and an active stress component [12] and is given
by:

SMN =
1

2

(
∂W

∂CMN
+

∂W

∂CNM

)
+ TaC

−1
MN , (2)

where W (I1, I2) is the strain energy function, CMN =
(∂xk/∂XM )(∂xk/∂XN ) is the right Cauchy-Green de-
formation tensor, and Ta is the active tension generated
by the electrical model. Mooney-Rivlin model [10, 12] is
introduced to describe the mechanical properties of the
tissue, and W for this model is given by:

W (I1, I2) = c1(I1 − 3) + c2(I2 − 3), (3)

with I1(C) = tr(C) and I2(C) =
1

2
(tr(C)− tr(C2)) are

the first two principal invariants of C, and tr(C) is the
trace of C, and c1 and c2 are material constants.

The direct influence of deformation on the electrophys-
iological properties is via the mechanoelectric feedback
(MEF) which is provided by stretch-activated currents
(SACs) as described in [14]:

ISAC = Gs
(λ1 − 1)

(λmax − 1)
(V − Es), (4)

where Gs and Es is the maximal conductance and
reversal potential, respectively, and λ1 is the fiber
stretch, which is normalized by the maximal stretch
(λmax). The current ISAC (4) is only present during
stretch, and is added to the total ionic transmembrane
currents generated by the LR1 model discussed in the
cardiac electrophysiology.

Cardiac Electrophysiology

A monodomain model was used to represent cardiac
electrophysiology, described by the following parabolic
partial differential equation [15]:

Cm
∂V

∂t
=

∂

∂XM

(
DMN

∂V

∂XN

)
− Iion (5)

where Cm is the membrane capacitance, V is the trans-
membrane voltage, t is time, DMN is the conductivity
tensor, and Iion is the sum of the ionic transmembrane
currents. We used Luo-Rudy-1 (LR1) [11] ionic model
to represent electrophysiological properties of the heart.
LR1 is a mammalian ventricular cell based model which
incorporates interaction between depolarization and re-
polarization and accounts for the calcium dynamics in
cardiac myocyte.

To take account the mechanical deformation of the tis-
sue, neglected in this model, we modify (5) as described
in [10, 12, 14] to give:

Cm
∂V

∂t
=

∂

∂XM

(
DMN

√
CC−1

MN

∂V

∂XN

)
− (Iion + ISAC)

(6)
Generation of Active Tension

We used Niederer-Hunter-Smith (NHS) [13] model for
the generation of active tension (Ta) which is generated
in response to electrical activation and coupled to nonlin-
ear stress equilibrium equations. Ta in this model is de-
pendent on quantities derived from both the cardiac me-
chanics model and the electrophysiological model. The
general form of the equations of this model can be writ-
ten as:

dw

dt
= g(w, λ1,

dλ1
dt

, [Ca2+]i), (7)

w = h−1(Ta), (8)

where w is a vector of internal state variables for the
contraction model, g and h−1 are prescribed nonlinear
functions. [Ca2+]i is the intracellular concentration of
Ca2+ ions generated by the LR1 model, and λ1 is the
fiber stretch calculated from the mechanics model.

III. CONTROL ALGORITHM

In this section, we describe the control algorithm de-
veloped to suppress alternans for the electromechanical
model, described in the previous section, in 1D. The con-
trol scheme combines a pacer applied at the boundary, a
spatially distributed, calcium based controller, and spa-
tially distributed mechanical perturbation control.

First, the tissue is paced at the boundary at a criti-
cal pacing cycle length (PCL), named τ∗, such that the
APD alternates. Under constant PCL, the amplitude of
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alternans grows. The APD is measured from the instant
when V crosses the threshold value during the depolar-
ization phase, until the instant it falls below this value
during the repolarization phase.

Boundary pacing control is realized by modulating the
pacing interval based on the consecutive APDs at the
pacing site, and is determined by the dynamic control
scheme [5]:

Tn = τ∗ + γ(APDn(ζ = 0)−APDn−1(ζ = 0)) (9)

Tn represents the amount of time between the n-th and
(n+1)-th stimuli. Here γ is the feedback gain. This pac-
ing control has the effect of suppressing cardiac alternans
up to 1 cm from the pacing site. Beyond that region the
instabilities grow along the tissue. To overcome this lim-
itation in controllability, we combined it with a spatially
distributed, calcium-based controller that modulates the
intracellular Ca2+ concentration. This is motivated by
recent studies [16, 17] that show that stretch-induced
changes in intracellular calcium modify the electrical ac-
tivity. The spatially distributed Ca2+-controller is im-
plemented in LR1 model as follows:

[Ca2+]i = −10−4Isi +0.07(10−4− [Ca2+]i)+α[Ca2+]err,
(10)

where [Ca2+]err = [Ca2+]pacer(t− τd)− [Ca2+]i,control

It utilizes the difference between a stabilized delayed
[Ca2+] at the pacing site and [Ca2+]i over the length of
area under spatially-distributed control. α is the con-
troller gain, and τd is the time delay factor to account
for the electrical wave propagation resistance along the
tissue length. The controller acts after the electrical
boundary feedback controller stabilizes a finite part of
the tissue’s length (≈ 1 cm).

A combination of the schemes ((9) and (10)) does not
suppress alternans in the whole cable of the cardiac tis-
sue cells, and more control effort is needed in order to
control alternans in the electromechanical model, there-
fore, we added an error based feedback control algorithm
implemented in NHS model that perturbs the tissue car-
diac mechanics in a localized region. The spatially dis-
tributed mechanical perturbation control is implemented
as follows:

w = h−1(Ta) + βen(ζ) (11)

where β is the controller gain, and en(ζ) = ATDrefs(ζ)−
ATDn(ζ). ATD is the width of active tension, it is mea-
sured from the instant when Ta crosses the threshold
value on the wave front, until the instant it falls below
this value on the wave back. This error is generated from
the difference between the stabilized ATDs (ATDrefs),
recorded before the onset of alternans, over the length of
the area (3-4.5 cm) under spatially distributed control,
and the ATDs at the n-th stimulus, over the same length
of area.

FIG. 2: Time evolution of the amplitude of alternans
showing alternans suppression using mechanical

perturbation and calcium based controller.

TABLE I: Parameter values for the mechanics model

c1 = 6 kPa c2 = 4 kPa λmax = 1.1
Es = −20mV Gs = 0.1µS/µF

IV. NUMERICAL RESULTS AND DISCUSSION

A one dimensional cardiac cable of the length L = 6.25
cm, fixed at the end points is considered. the diffusiv-
ity constant Cm = 0.001cm2/ms and the cell membrane
capacitance D = 1µF/cm2. All mechanics model param-
eters used in the simulation are given in Table I. For the
given parameters, τ∗ is found to be 307 ms. The con-
troller gains γ, α, and β are chosen to be 0.3, 0.03, and
0.00002 respectively in the simulation. The excitation
and active tension models were solved by explicit Euler
scheme with step time ∆t = 0.05 ms and step size ∆X =
0.025 cm, and we determined the deformation mechanics
of the tissue using finite difference scheme.

The amplitude of alternans, an(ζ), is defined as
the difference between two consecutive APDs at a given
point in space ζ:

an(ζ) = (APDn(ζ)−APDn−1(ζ))(−1)n (12)

As shown in Fig. 2, the control signal of (10) and
(11), applied at time = 150000 ms, which acts after the
boundary pacing controller is applied at time = 10000
ms, successfully suppress alternans. The changes in Ta
affect the mechanical deformation in (1), which then
affects the transmembrane potential (6), through MEF.

The presence of electrical alternans induces, through
the mechanism of ECC, an alternation in the heart
muscle contractile activity. As shown in Fig. 3, the
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(a) (b)

FIG. 3: Time evolution of active tension Ta before (a), and after (b) the control is applied.

ATD width alternates when the control is not applied,
Fig. 3a(a), and is suppressed, Fig. 3b(b), after the
control is applied.

Although spatially distributed control is only ap-
plied over a localized region of the tissue (1.5 cm), it
successfully suppress alternans. Thus, using a model

based on the mechanical properties of cardiac tissue, it
is clearly shown that spatially distributed mechanical
perturbation control can be used to manipulate the
electrical APD in order to suppress alternans along the
whole cable of the cardiac tissue cells.
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