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I. INTRODUCTION  

Heart diseases are the leading cause of death in 
the world. With the recent developments in scientific 
computing, numerical modeling starts to play a crucial 
role and provides the necessary tools for 
understanding rhythm disorders of the heart. However, 
efficient three-dimensional simulations of the electrical 
waves in the human heart are not yet feasible. The 
major difficulty is that the action potential is a wave 
with sharp depolarization and repolarization fronts. 

The bidomain model is considered as the 
mathematical equations that give the best 
representation of the electrical waves in cardiac tissue 
(see Colli Franzone et al. [1]), and consists on the 
following equations: 

 

 

 

 

 

       Where                   is the transmembrane potential,                   
     and     are the intracellular  and the extracellular 
potentials, respectively, and     is the recovery variable. 
The functions                    and                 represent the 
ionic model, and     and      are the symmetric intra- 
and extra-cellular conductivity tensors.  
      
      Modern cardiac ionic models results generally in a 
set of 10 to 60 ordinary differential equations. In this 
work, the simplified Aliev-Panfilov model (see Aliev 
and Panfilov [2]) is used to illustrate the adaptive 
method and consists of the following equations: 

 

 

 

        
 
       The system of nonlinear partial differential 
equations coupled with an ordinary differential 

equation (1)-(2) is computationally very expensive, the 
major difficulties are due to the computational grids 
size that must be very fine to get a realistic three 
dimensional simulation of cardiac tissue. Many 
methods have been introduced in the literature to 
overcome these difficulties. Parallel computing 
techniques, for fixed spatial mesh, are used to reduce 
the computational time (see Colli Franzone and 
Pavarino [3]).  
 
Recently, adaptive methods have been introduced in 
the context of electrocardiology, and consist in locating 
finer mesh near the depolarization and repolarization   
front position while a coarser mesh is employed away 
from the front (see Cherry et al. [4], Colli Franzone et 
al. [5]). In this work, a three-dimensional time-
dependent adaptive method is used for the bidomain 
model. This method uses anisotropic mesh to reduce 
greatly the total number of element and therefore the 
computational time. A realistic geometry of the heart is 
used to show the performance and the accuracy of 
proposed algorithm. More details and discussion about 
this method is presented in Belhamadia [6,7] for the 
two-dimensional case and in Belhamadia et al. [8] for  
the three-dimensional with a monodomain model case. 
 
       This paper is organized as follows. Next section is 
devoted to the finite elements discretization while a 
brief description of the adaptive method is presented is 
section III. The last section presents three-dimensional 
numerical results showing the accuracy of the 
proposed method. 

II. FINITE ELEMENT DISCRITIZATION 

Several time-stepping strategies have been introduced 
for the bidomain model (see Bourgault et al. [9], and 
Keener and Bogar [10]). In all our numerical 
simulations, a fully implicit backward second order 
scheme (Gear) is employed as time discretization. The 
reader is refereed to [6] for more discussion about 
different time schemes and its impact on two-
dimensional mesh adaptation. For instance, starting 
from       and         at time     and from         and          at 
time    , Gear scheme gives: 
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         A quadratic (P2) element is used for spatial 
discretization. The finite element variational 
formulation of the system (1)-(2) is straightforward. 
Newton’s method is used to solve this nonlinear 
system at each time step. The obtained linear system 
is solved by iterative methods, the GMRES solver [11] 
with an incomplete LU decomposition (ILU) from the 
PETSc library [12]. 

III. TIME-DEPENDENT ADAPTIVE METHOD 

        Several authors estimate that a typical simulation 
of the whole heart may require about 107 mesh points, 
and therefore the memory requirements for structured 
mesh would rapidly exceed the capacity of available 
computers. In this paper, the computational mesh is 
refined near the front position, and the total number of 
mesh elements obtained is greatly reduced. 
 
        A brief description of the adaptive method for time 
dependent problems will now be presented. The error 
estimator is based on a definition of edge lengths 
using a solution dependent metric. The reader is 
refereed to Belhamadia et al. [8,13] for more details. 
Also, the bidomain model is a time-dependent problem 
and the mesh must be refined at each time step near 
the front position. Thus, a time-dependent algorithm is 
developed for this model and consists on the following: 
 
1) Start from the solutions                                              
and a mesh        at time 
 
2) Solve the system (1)-(2) on mesh        to obtain a 
first approximation of the solutions                               
at time  
 
3) Adapt the mesh by defining the metric through the 
composite variables 
 
 
 
4) Reinterpolate                                                on mesh 
  
 
5) Solve the system (1)-(2) on mesh           for 
 
 
     

       
      The fully implicit backward second order scheme 
(Gear) used for time-stepping requires that the 
solutions at three time steps enter in the composite 
variables used in the adaptation algorithm. This is why 
step 3) is particularly important and the new mesh 
must properly capture the front position at  time 
 
 

IV. THREE-DIMENTIONAL NUMERICAL 
RESULTS 

       A test problem will now be solved in three 
dimensions using a realistic heart geometry. This 
geometry has been obtained by dissection of a dog's 
heart, and the data is available from the 
Bioengineering Research Group at the University of 
Auckland (see Nash [14]). Homogeneous Neumann 
conditions are imposed on all boundaries. The initial 
transmembrane potential, the recovery variable, and 
the intra-cellular are given by: 
 
 
 
 
 
 
 
 
 
 
 
      This amounts to set non-zero potentials in a small 
region near the A.V. node. The symmetric conductivity 
tensors are                          and the other 
dimensionless parameters are given by: 
 
 
 
 
 
 
       Figure 1 presents the transmembrane potential 
along a segment using two different uniformly refined 
meshes leading to 308127 dof and 1774439 dof. As 
could be seen, the transmenbrane potential position is 
very sensitive to insufficient mesh resolution.  
       
        Since a reference solution in three-dimension is 
very difficult to obtain, figure 2 presents  a comparison 
between the solution obtained with regular mesh using 
1774439 dof and with the adapted mesh using only 
27400 dof. The two numerical solutions are almost 
the same. However, the number of elements is 
greatly reduced with the adaptive method since the 
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mesh is refined only in the vicinity of the front position 
while keeping sufficient resolution in other regions. 
The gain in computational time is very obvious since 
the total number of element is greatly reduced. The 
reader is refereed to [8] for quantitative results in the 
context of monodomain model. 
 
     Figure 3 shows a cross-section of the 
transmembrane potential at time                using 
regular and adapted mesh. This figure shows that the 
adaptive method clearly gives a smoother wave front. 
The adapted mesh is presented in figure 4 a), while a 
cross section of this mesh is presented in figure 4 b).  
This figure shows the use of the anisotropic mesh, 
which produces a concentration of the elements near 
the front location, leading to an accurate numerical 
solution. 

V. CONCLUSION 

In this work, an adaptive method for the bidomain 
model was presented. This method reduces the total 
number of elements and leads to an accurate three-
dimensional numerical solutions. Realistic heart 
geometry has been used to illustrate the advantage of 
the proposed algorithm. 
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Figure 1: Transmembrane potential with two 
regular meshes 
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1774839 dof with uniform mesh

27400 dof with adapted mesh

 

Figure 2: Transmembrane potential with regular 
and adapted mesh. 
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a) Uniform mesh: 308127 dof. 

 

b) Uniform mesh: 1774439 dof. 

        

c) Adapted mesh: 27400 dof. 

Figure3: Cross-section at              of the 
transmembrane potential at time  

 

a) Mesh envelope 

 

 

b) Cross-section at  

 

Figure4: Adapted mesh at time  
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