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INTRODUCTION 

System identification techniques have been used 
widely to find mathematical descriptions for 
physiological systems from measured input/output 
data. Since these systems often contain hard 
nonlinearities, block structured models, cascades of 
static nonlinearities and dynamic linear systems, can 
be used to represent them [1]. The main advantage of 
such models over other nonlinear models is that they 
retain much of the simplicity of linear models, but can 
nevertheless be used to approximate many nonlinear 
systems very accurately. The simplest of these is the 
Hammerstein cascade: a memoryless nonlinearity 
followed by a dynamic linear element. 

The stretch reflex is the involuntary contraction of 
a muscle in response to a perturbation of its length. In 
the case of the ankle, it can be treated as the dynamic 
relationship between the angular velocity of the ankle 
and the resulting electromyogram (EMG), measured 
over the Gactrocnemius-Soleus (GS) [2].  Kearney and 
Hunter [3] suggested a Hammerstein structure to 
model such dynamics and showed that the static 
nonlinearity resembles a half-wave rectifier. Westwick 
and Kearney [1] used polynomials to represent the 
nonlinearity because they are computationally easy to 
use. Nevertheless, they are not suitable to fit hard 
nonlinearities. So, Dempsey and Westwick [4] 
considered cubic splines, which can represent 
nonlinearities containing hard and smooth curves, as 
the nonlinearity in the Hammerstein cascade. 
However, cubic spline functions are defined by a 
series of knot points which must either be chosen a-
priori, or treated as model parameters and included in 
the (non-convex) optimization.  

Recently, support vector machines (SVMs) and 
least squares support vector machines (LS-SVMs) 
have shown powerful abilities in approximating linear 
and nonlinear functions [5], [6]. They provide much 
greater flexibility in modeling nonlinearities than is 
possible with a fixed basis expansion. The SVM has 
additional advantages over the LS-SVM, sparseness 
of the solution and robustness to outliers, but requires 
increased computational effort. SVMs and LS-SVMs 
are fit by solving convex optimization problems, and do 

not require a-priori structural information [6]. Al 
Dhaifallah and Westwick [7] formulated an algorithm to 
identify NARX Hammerstein models with nonlinearities 
represented using SVMs. In this paper, this algorithm 
will be used to identify the stretch reflex dynamics 
model. 

SUPPORT VECTOR MACHINES FOR FUNCTION 
ESTIMATION 

Basically, to construct a support vector machine 
for real-valued function estimation problems, the input 
data are mapped into a high-dimensional feature 
space where a linear function is constructed. A kernel 
function is used to avoid constructing this mapping 
explicitly.  

STANDARD SVM REGRESSION 

Consider the nonlinear regression model y = 
f(x)+v where f : ℝd→ℝ is an unknown scalar-valued 
function and v is an additive white noise term. xi is a 
sample value of the input vector x and yi is the 
corresponding value of the model output y. In the 
primal space, the following model is assumed for f(x) 

f(x)=wTϕ(x)+d0
(1)

Where ϕ: ℝd→ℝnH denotes a mapping to high 
dimensional feature space which can be infinite 
dimensional, w is a vector of weights in this feature 
space, and d0 represents the bias term. Now, to find 
an estimate of the dependence of y on x in the  
standard SVM sense, a cost function consisting of a 
weighted average of ε-insensitive cost function and the 
L-2 norm of the weight vector is minimized, 
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    Where ε is the accuracy level of the 
approximation, c > 0 is a constant that determines the 
relative weighting of the two terms, and ξi and ξi

∗ are 
the errors in the ε-insensitive cost function, which are 
treated as slack variables in the optimization problem.  

The optimization problem just described is the 
primal problem for regression. To formulate the 
corresponding dual problem, we write the Lagrangian 
function L. Then, we minimize L with respect to the 
weight vector w and slack variables ξ and ξ* and 
maximize with respect to the Lagrange multipliers. By 
carrying out this optimization we can write w in terms 
of the Lagrange multipliers. Finally, we can substitute 
the value of w and simplify to get the following dual 
problem (see [6] for details) 
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]. Finally, the 
nonlinear function model takes the form 

1i=

(6)

∗ are vectors of Lagrange multipliers. 
This maximization is a quadratic program, which can 
be solved using standard tools [5], [6

( ) ( ) 0
* x,xf(x) dK

l

iii +−= ∑ αα  

Where K(xi,xj)= ( ) ( )ji xx ϕϕ  is a kernel function used 
to represent the inner product in the feature space. 
They can be any symmetric function satisfying 
Mercer's condition [6]. Typical examples are the use of 
a polyno

 
Figure 1: Block diagram of an ARX-Hammerstein    
cascade. The investigator is assumed to have access 
to the input, u(t), and the output, y(t), but not the 
intermediate signal, x(t) or the innovation, e(t). 

IDENTIFICATION OF NONLINEAR ARX 
HAMMERSTEIN MODELS 

    The Hammerstein cascade, a static nonlinearity 
followed by a linear filter as shown in Figure 1, is often 
used to represent certain higher-order nonlinear 
systems.  

The output of the NARX Hammerstein model is 
given by:  
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Where ut, yt ∈ℝ, are the input and output 
measurements, respectively, for t=1,…,N. The noise et 
is assumed to be white and m and n denote the order 
of the numerator and denominator in the transfer 
function of the linear model. The static nonlinearity is 
assumed to have the form (1).  

Following Goethals [8] overparameterization 
approach, an overparameterized, but linear in the 
parameters, model [8], [9] is initially identified. Hence, 
(7) can be rewritten as 
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T

mial kernel or the radial basis function (RBF) 
kernel. 

Note that models of this form can be uniquely 
identified, but this model class is more general than 
the Hammerstein model, which it includes as a special 
case (when wj =bjw for j=1,...,m). The strategy will be 
to identify this model first, and then use a low-rank 
projection to force the estimated model to be a 
Hammerstein cascade. 

Now, to identify the linear and nonlinear parts, 
solve the following optimization problem 
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Note that (9) is a standard SVM objective function, 
consisting of the 2 norm of the parameters (w and a) 
and the Vapnik ε-insensitive cost function (2) applied 
to the residuals. The constraints in (11) are derived by 
modifying the constraints of the standard SVM to 
include the dynamics of the ARX model. Constraints 
(10) were added to center the nonlinear functions 
wj

Tϕ(⋅), j=0,…,m around their average over the 
training set [7], [8]. 

The dual optimization problem can be written as 
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For a detailed derivation of (13), the interested is 
referred to [7]. By solving (13), one gets α, α∗, and γ. 

Hence, ai is given by ( )∑
=

−−=
N

rt
ittti ya *αα  and d can 

be computed based on the Karush-Kuhn-Tuker (KKT) 
conditions as follows. If (αi or αi

∗)∈(0,c) then 
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Separating Numerator and Nonlinearity Parameters 

To extract the numerator parameters, we use the 
solution presented in [7] and [8], which involves using 
the SVD of a m by N matrix to compute the 
nonlinearity output and b parameters. Then, using the 
training input sequence [u1,…,uN] and the extracted 
sequence of the nonlinearity responses, we can train a 
SVM to represent the nonlinear part of the 
Hammerstein system. 

ILLUSTRATIVE EXAMPLE 

In this section, the algorithm described above will 
be applied to the identification of the relationship 
between the ankle velocity and the GS-EMG. This 
problem has been studied extensively in [1] and [4]. 
The data were created as follows: a pulse sequence 
was used as the reference input for an electrohydraulic 
position servo. Then, the ankle position, the response 
to the torque produced by the position servo, and the 
GS-EMG were measured (see Kearney and Hunter [3] 



for details regarding the experimental procedure). The 
relationship between the ankle velocity, obtained by 
numerically differentiating the measured position, and 
the GS-EMG, modeled as a Hammerstein system, was 
identified using the first 1000 data points. The 
nonlinear part was represented by a SVM and the 
linear part was modeled by an ARX model of order 
two. The SVM training is controlled by a number of 
hyper-parameters: the choice of kernel function and 
the parameters associated with that kernel, and the 
regularization parameter, c (see Eq. (2)). These values 
were selected based on cross-validation where we 
partitioned the data set into training and validation 
sets. Then, different values of the linear model order or 
one of the hyper parameters are compared by 
evaluating there performance on the validation data 
while keeping the others fixed [10]. For example, the 
regularization parameter c value was chosen by 
comparing the performance of the validation data on 
values ranged from 10 to 500 while keeping the linear 
model order and the other hyper parameters values 
fixed. The best model was obtained using an RBF-
kernel with σ=1 and a regularization parameter c=29. 

Figure 2 shows the elements of the identified 
SVM-ARX Hammerstein system. Note that the 
nonlinearity (lower panel) resembles a half-wave 
rectifier, but includes a threshold (at about 0.4 rad/sec) 
and smooth transition from the inactive to the active 
regions, and the beginnings of a saturation at the 
highest velocities tested. The linear dynamics are less 
well defined, perhaps because of the need to use a 
low-order ARX model in the present algorithm. As 
evident in Figure 1, the ARX structure includes a noise 
model which shares the same poles as the 
deterministic system. The ARX structure was used in 
this study because it is compact and linear in the 
variables. Future work will consider the extension of 
this SVM based identification technique to include the 
output-error class of linear system models. 

CONCLUSION 

An identification algorithm for Hammerstein 
models consisting of a Support Vector Machine 
nonlinearity followed by an ARX model for the linear 
dynamics was developed, and used to construct a 
model of the relationship between the ankle angular 
velocity and the EMG measured over the 
Gactrocnemius-Soleus muscles. The SVM was able to 
model a complex nonlinearity, without requiring any a-
priori assumptions regarding its structure. The present 
algorithm is limited to the use of ARX linear dynamics, 
which may not have been suitable for the system 
under study. 

 

 
Figure 2: Identified Hammerstein Cascades of the 
Stretch Reflex EMG using Support Vector 
Machine Regression with Support Vector Machine 
nonlinearity. 
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