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INTRODUCTION 
 
Being able to localize the source of electrical 

tivity within a nerve would improve our ability 
 map neural pathways and to monitor the 
tivity of specific pathways.  If this monitoring 
uld be done in real-time, it could improve the 

andwidth of information between a user and a 
eural prosthesis and thereby allow for finer 
ntrol of the prosthesis.  Nerve cuff electrodes 
n tell us that there is activity somewhere in the 

erve, but techniques to determine the location of 
at activity are currently limited [7].  Intraneural 
ectrode arrays, on the other hand, can give us 
formation only about a few specific sites.  The 

verall objective of our research is to achieve 
ore precise localization of electrical activity 
ithin a nerve than what is possible with existing 
ethods, by approaching the issue as an inverse 

roblem of source localization.  Using potential 
cordings from multiple sites at the periphery of 
e nerve, obtained from a cuff electrode with a 
rge number of contacts, the problem can be 
rmulated as a modified version of the 
ectroencephalography/magnetoencephalography 
urce localization problem  [4,5]. 

Before recovering the source distribution from 
e electrode measurements (the inverse problem 
P)), we must first construct a model of the 
eripheral nerve.  This model is used to compute 
e measurements that would result from a unit 
urce placed at each possible location in the 

iscretized region (a process that is known as 
lving the forward problem (FP)).  This 
formation is gathered into an NxM matrix 

nown as the leadfield matrix, where N is number  

 
of measurements and M is three times the number 
of possible source locations (there is one column 
for each of three orthogonal sources at each 
location).  In this study the FP is solved using 
finite element (FE) modeling.  We attempt to 
reduce the number of elements in the FE mesh 
without affecting the quality of the solution in a 
given region of interest (ROI).  By reducing the 
number of mesh elements, we reduce the 
computational time needed to solve the IP, and 
also make that problem better determined. 

 
BACKGROUND 

 
The relationship between the set of measurements 
v, the leadfield matrix L, and the discretized 
source distribution j is given in Equation 1  [5]. 
 

ε+= Ljv    (1) 
 
ε is the additive noise.  The goal of the IP is to 
recover j when v and L are known.  Typically N 
is much smaller than M, so the problem is ill-
posed and has an infinite number of solutions.  To 
overcome this problem, a common strategy is to 
solve a minimum-norm least-squares problem that 
yields the solution that has the smallest norm 
while still satisfying the measurements.  
Additional information can be incorporated into 
the problem by minimizing a weighted version of 
the solution norm.  This minimization problem 
can be expressed as shown in Equation 2, and its 
solution is shown in Equation 3 [5]. 
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H is a diagonal matrix whose entries are the 
weights associated with the minimization of each 
point in the solution space, λ is a parameter that 
balances the model fitting and the minimization of 
the weighted norm, and I is the identity matrix.  
Because the expression for the source distribution 
estimate contains L, it is necessary to obtain this 
matrix before the IP can be addressed.  This FP is 
solved using numerical methods because the 
complexity of the region under consideration 
makes analytical approaches prohibitive.  For a 
region with anisotropic conductivity, such as a 
peripheral nerve, the FE method is the most 
appropriate [6] and therefore is used here.  Each 
element in the FE mesh corresponds to one entry 
in j and one column L.  By reducing the number 
of mesh elements, these matrices can be made 
smaller, which will lead to faster computations 
when solving the IP.  Furthermore, assuming L is 
of rank N, the dimension of the nullspace of L is 
M-N.  The nullspace of L contains all the source 
distributions that cannot be detected.  An 
additional advantage of reducing the number of 
mesh elements is that the dimension of the 
nullspace of L would be slightly reduced as well. 
 

STRATEGIES FOR MESH REDUCTION 
 

The simplest way to reduce the number of 
variables is to make the mesh coarser in the FE 
model (either uniformly or in certain regions).  
The disadvantage of this approach is that the 
coarser mesh will have a detrimental impact on 
the solution of the FP, making the leadfield matrix 
less accurate and harming rather than helping our 
efforts to solve the IP.  The alternative approach 
suggested here is to solve the FP with as fine a 
mesh as is computationally feasible, and then 
group certain mesh elements together for the 
purposes of solving the IP.  The leadfield columns 
for all the elements in a group are averaged 
together to obtain a single new column, for each 
of the three source orientations.  As a result the 
number of variables in the IP is reduced without 
affecting the FP computations.  The resulting 
groups of mesh elements are not proper mesh 
elements themselves (e.g., not tetrahedral), but it 

is a simple matter to map the solution back to the 
original mesh once an inverse solution as been 
obtained.  The remaining problem is therefore 
how to choose which mesh elements to group 
together.  We propose two criteria. 

The first possible justification for grouping 
two variables is that they cannot be reliably 
distinguished by source localization algorithms.  
Depending on the number and location of the 
electrode contacts, the nerve properties, and the 
mesh coarseness, two mesh elements may be 
indistinguishable.  In order to quantify such 
similarity, we compare the leadfield matrix 
columns corresponding to those two elements.  If 
the norm of the difference of the two vectors is 
below a certain threshold, the elements are 
deemed to be indistinguishable.  Given the 
anisotropy of peripheral nerves, it is possible for 
elements to be indistinguishable when sources are 
placed in one orientation but not in another. 

The second criteria for grouping mesh 
elements is to define a ROI, then coarsen the 
mesh outside of that region by forming groups of 
adjacent elements (regardless of their 
distinguishability).  The mesh coarseness in the 
ROI is therefore not affected, while the total 
number of variables is reduced.  In peripheral 
nerves, the main goal is to identify the pathways 
that are active, meaning that we are more 
interested in the radial position of the sources 
within a cross-section than in their longitudinal 
position along the nerve.  The ROI can therefore 
be a thin slice of the nerve, whose exact 
longitudinal location is not of critical importance.  
The slice need only be thick enough to ensure that 
it will include nodes of Ranvier for all myelinated 
axons in the nerve. 
 

METHODS 
 

A FE model of a 2 cm segment of a single-
fascicle rat sciatic nerve was constructed, 
including the endoneurium, perineurium, and 
epineurium layers, a cuff electrode around the 
nerve, saline and connective tissue layers between 
the nerve and electrode, and a saline bath 
surrounding the nerve.  10 rings of 13 electrode 



contacts were placed in the cuff.  Although 130 
contacts is more than what is currently available 
in existing electrodes, the number of contacts per 
ring is based on existing designs (e.g. [7]), and for 
the purposes of this simulation study having a 
large number of contacts is helpful for the 
evaluation of the methods proposed.  The 
leadfields were computed with the help of the 
SCIRun environment [1].  

Three active myelinated axons were simulated 
at randomly generated radial positions by placing 
three sets of twenty dipolar sources 
(corresponding to nodes of Ranvier), oriented 
along the axis of the nerve.  The ROI was defined 
as a 2 mm segment halfway up the nerve model, 
corresponding to layers 61 to 99 of the 159 layers 
making up the FE model.  The density of the 
layers was greater in the ROI in order to obtain a 
more precise view of the activity in that area.  The 
ROI contained 5 of the 60 sources.  Simulated 
measurements were obtained using the leadfield 
derived from the unmodified mesh.  No noise was 
added for the purposes of this study. 

To examine the effects of similarity-based 
groupings, mesh elements were grouped based on 
their similarity in the longitudinal direction.  This 
criterion is for illustrative purposes only; ideally, 
two elements should be grouped only if they are 
indistinguishable in all three orientations.  Two 
leadfield columns were deemed to be similar if 
the norm of their difference was smaller than 1% 
of the largest of the two column norms.  Groups 
were defined to contain at most 4 connected 
elements. 

To examine the effects of the ROI-based 
groupings, mesh elements in layers 1 to 50 and 
110 to 159 were grouped into groups of up to 3 
connected elements.  Note that the groupings are 
performed using simple algorithms (for both this 
case and the previous one) that are by no means 
optimal, but are sufficiently effective for the 
purposes of this paper. 

The IP was solved using the unmodified 
leadfield and each of the two modified ones.  In 
each case, the method used was the standardized 
FOCUSS method, run for 200 iterations and 
initialized with standardized LORETA [2,3], with 

no additional regularization.  The standardization 
method was modified to account for the 
anisotropy (each leadfield column, rather than 
each mesh element, had a separate normalization 
factor).  The solution space was limited to the 
endoneurium, which accounts for 20274 of the 
85962 elements in the original mesh (excluding 
the saline bath). 

 
RESULTS 

 
Table 1 displays the size of the three leadfield 

matrices, as well as the time required to solve the 
IP with each leadfield on a 3 GHz Pentium 4 PC. 

 
Table 1: Effect of groupings on matrix size and IP 

solution time 

Leadfield Matrix Size Time to Solve IP 
Unmodified 130x60822 431.95 s. 
Similarity-
based grouping 

130x27213 192.19 s. 

ROI-based 
grouping 

130x39549 290.77 s. 

 
Figure 1 shows the solution of the IP using the 

unmodified leadfield.  All the localized sources 
from the 39 layers in the ROI are projected onto a 
single cross-section, i.e. each circle represents the 
radial position of one element of the solution in 
the ROI, with the height information removed.  
The figures do not contain any information 
regarding activity outside the ROI, because our 
goal was to maintain the quality of the solution in 
the ROI only. The plus signs indicate the location 
of the true sources.  A perfect solution would 
therefore consist of having a circle around each 
plus sign, and nowhere else.  Figure 1 shows that 
although there are spurious elements in the 
solution, the general pattern gives a reasonable 
representation of the true sources.  The solution 
using the similarity-based grouping criterion is 
identical except for the absence of the locations 
indicated by arrows in the figure.  The groupings 
therefore led to fewer spurious elements, slightly 
improving the solution. 
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Figure 1: Localization with similarity-based groupings 

Figure 2 displays the solution obtained using the 
ROI-based criterion.  It is noticeably sparser and 
the rightmost axon is not found (i.e. not circled).   
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Figure 2: Localization with ROI-based groupings 

If, in addition, we display elements that are 
indistinguishable from the elements present in 
Figure 2 for sources in the longitudinal direction, 
we obtain Figure 3, where all three axons are now 
localized.  This last experiment highlights the fact 
that distinguishability should be taken into 
account when interpreting solutions. 
 

CONCLUSION 
 

Distinguishability of mesh elements is 
important for the interpretation of the IP solution, 
and can effectively be used as a grouping 
criterion.  Groupings based on the ROI were less 
effective but with careful interpretation the 

locations of the true sources could still be 
recovered.  Both groupings resulted in faster IP 
computations.  More work in this direction is 
warranted in order to help speed up IP solutions, 
which is crucial to eventual real-time 
implementation and applications to control of 
neural prostheses. 
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Figure 3: Solution after addition of locations similar to 
those shown in Figure 2 
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