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INTRODUCTION 

Topographical orientation is the ability to orient 
oneself within the environment and to navigate through 
it to specific destinations [1]. On the other hand, 
Topographical disorientation generally refers to the 
family of deficits in orientation and navigation in the 
real environment. 

Recent studies have suggested that specific 
structures in the human brain such as the 
parahippocampal gyrus, the parietal cortex and the 
temporal cortical areas play an important role in 
topographical orientation [2-4]. 

It is generally agreed that in normative wayfinding, 
humans employ a number of different wayfinding 
strategies, including landmark recognition, route 
learning and map-like representations [5-6]. These 
strategies can be used independently or in 
combination. The choice of the strategies to follow 
may depend on the developmental age of the 
individual, his familiarity with the environment, the task 
to be accomplished, the detail level of the environment 
and how the environment was introduced to the 
individual. 

Although there is a wide range of studies on the 
causes and implications of topographical disorientation 
as mentioned before, there is limited research on the 
navigational patterns followed by these patients. 
Epstein et al. [7] have reported one case study in 
which a patient with topographical disorientation may 
present a navigational behaviour that resembles a 
random walk when they are asked to reach a goal 
departing from a start point in a building that the 
patient is familiar with. 

In this paper is developed a simulation tool to 
understand the navigational patterns and behaviour of 
an individual with topographical disorientation, based 
on the errors that this patient might make while 
navigating in an indoor environment. The proposed 
simulation is used as a tool to achieve a better 
understanding of these navigational patterns and 
assess possible problems that individuals with 
topographical disorientation might be experiencing in 
real life situations. 

METHODOLOGY 

Representation of a building as a connected graph 

The building structure was represented by a 
connected graph in order to capture the complexity of 
map representations. The connected graph provides a 
simplified representation of the areas that are 
physically connected. 

This approach has been adapted from previous 
studies in the same area [8-9]. Specifically, in this work 
we adapted the scheme used by Belkhous et al to 
create a connected graph [9], reducing the complexity 
by using a single node per room opposed to a node 
per door. Therefore, to create a connected graph from 
a floor plan a node is placed in each room and at 
every decision point on the floor plan. A decision point 
is a physical space where a navigational decision has 
to be made (i.e. turning, continuing straight ahead, 
entering a room). Each node is labeled with a unique 
number for identification purposes. 

Once all the required nodes have been placed on 
the floor plan they are connected by edges. Two 
nodes will be connected if there is a physical, 
navigable connection between the two nodes (for 
instance, a hallway or an open door). Each edge is 
assigned a cost value which is related to its length. 
The edge shape must adjust to the physical constraint 
of the structure (i.e. they should follow the curvature of 
hallways). In this way the cost will physically represent 
the distance traveled by the patient (that can be 
related to the time taken to navigate along the edge at 
a constant speed). 

To have an accurate relationship of distance 
between the nodes in physical space and the graphical 
representation of this distance by an edge, this edge 
must adjust to the shape of the physical constraints of 
the structure of the building (i.e. they should follow the 
curvature of a hallway). 

In this way, a weighted connected graph that 
represents the structure of a building is constructed. 



Data structure associated to the connected graph 

In order to process the information provided by the 
connected graph generated with a simulation program, 
the information contained in the connected graph must 
be stored in a data structure that can be accessed by 
common programming languages. 

A connection matrix is generated using a text file 
in a Comma Separated Values (CSV) format. The file 
contains the same number of rows and columns. The 
interconnection information for each node will be 
stored in both a row and a column; for instance, 
information on how node 3 interconnects will be stored 
in both row 3 and column 3. In this way the 
interconnection information relating nodes 3 and 4 will 
be stored in the cells (3,4) and (4,3), and both cells will 
contain the same value. The value of each cell of the 
matrix will be the cost associated with the edge 
connecting those two specific nodes. If there is no 
specific interconnection between two nodes, a value of 
-1 is stored, which will be interpreted as infinity. The 
value of the distance of a node to itself will be stored 
as -1 as well. 

The dichotomy of value storage in the matrix, (x,y) 
and (y,x) is physically representative and eliminates 
the need to provide the nodes in a specific order. 

Route selection 

Chown et al [6] state that two subsystems are 
involved in visual cognition, called “contour” and 
“location” subsytems. Both subsystems are combined 
to account for landmark identification and direction 
selection respectively as used in wayfinding tasks. 
Chown et al. also propose that both subsystems work 
in a connectionist fashion, whichs resonates with the 
idea of connected graphs, and also state that 
navigation can be achieved with just one of these 
systems, being the second used in a more advanced 
stage of process of wayfinding than the first as it is 
used when the user is familiar with the environment. 

In order to simulate a system based on direction-
selection only, we decided to use existing well 
established routing algorithms. Provided that we have 
a connected graph representing the environment, we 
can use an existing routing algorithm such as the 
Dijkstra algorithm, or A* or D*, to calculate the shortest 
path between two interconnected nodes on the graph. 
The Dijkstra algorithm is a graph-theoretic method [10] 
that has been widely applied for routing packets in 
communication networks, and is used by routers 
interconnecting communication networks being 
implemented in the 'Open Shortest Path First' (OSPF) 
routing algorithm [11-12]. It is also commonly applied 
for routing humans [13], mobile elements (i.e. robots) 

and virtual or simulated subjects in labyrinths and 
maps [8, 9, 14]. 

The Dijkstra algorithm was therefore selected to 
simulate a human navigation direction selection based 
system. The algorithm was programmed in PERL, 
which offers a simple language conducive to data 
management. 

Disorientation simulation 

The Dijkstra engine programmed will calculate the 
most efficient route to follow in the connected graph 
representing the building. As stated previously, an 
individual with topographical disorientation presents a 
walking pattern that resembles a random walk when 
he is asked to navigate from a start point to a 
destination inside a building. Therefore, we decided to 
assign a Probability of Confusion PC, where 0 ≤ PC ≤ 1 
which reflects the likelihood of the individual making a 
wrong decision with regards to the next path to follow 
at each decision point. A value of PC = 1 will generate 
a random walk pattern. A value of PC = 0 indicates a 
perfectly oriented individual. 

After defining PC for the individual, he is requested 
to walk from a start point to a destination in a building 
represented by a connected graph as described 
before. The process is as follows: 

1. Define the value of PC for the individual,          
0 ≤ PC ≤ 1. 

2. At each node traversed by the individual, 
obtain a random value R from a uniform 
distribution, where 0 ≤ R ≤ 1. 

a. If R < PC at that node, the patient will 
chose randomly to follow any of the edges 
available at that node. 

b. If R ≥ PC at that node, the best route to 
follow from that specific node to the 
destination will be calculated using the 
Dijkstra’s algorithm, and the individual will 
move to the next node as calculated. 

3. The process is repeated at each node from 
step 2 until the individual reaches the 
destination node. 

Experiment design 

Five virtual individuals with different values for PC 
were defined. PC = 0, PC = 0.25, PC = 0.5, PC = 0.75 
and PC = 1. A virtual building was defined and its 
structure was mapped to a connected graph using the 
method described previously. The building created is 
shown in Figure 1. 



 
Figure 1: Synthetic building designed. 

 

Each virtual individual was asked to walk through 
the building 25 times from node 10 to node 37. The 
number of nodes traversed and the distance traveled 
were recorded. 

RESULTS 

Estimates for the number of nodes traversed and 
the distance traveled by each of the individuals with 
varying levels of confusion are reported in Table 1. 
The probabilistic distribution of the parameters 
recorded was similar to a gamma distribution. 
Therefore, the data were fitted to gamma distribution in 
order to obtain the location and variability estimates. 

 

Table 1: Location and variability estimates of the 
distribution for the number of nodes traversed and 
distance traveled by individuals with different PC 
values. Numbers in parenthesis indicate the data 

variability. 

PC Nodes traversed  Distance traveled 

0  10 (0)  974 (0) 

0.25  14.2 (3.2)  1336 (322) 

0.5  21.9 (7.5)  2043 (717) 

0.75  53.3 (24.4)  4700 (2114) 

1 (random walk)  281.9 (238.0)  24784 (20900) 
 

The paths followed by individuals with a) PC = 0 
(no confusion), b) PC = 0.25, and c) PC = 0.5 are 
depicted in Figure 2. The distances traveled by each 
patient were a) 974, b) 2192 and c) 2282. 

a)

 
b)

 
c)

 
Figure 2: Routes followed in the first run of the 25 runs 

for the patient with a) PC=0, b) PC=0.25, c) PC= 0.5. 

 



DISCUSSION 

These results show that the distance traveled by 
an individual with PC = 1, who is in fact performing a 
random walk in search of the destination room, is more 
than 25 times the distance traveled by an experienced 
oriented individual for the specific experiment 
designed. If we compare the random walk results with 
the route that might be followed by an individual 
experiencing topographical disorientation as 
suggested by Epstein el al [7]. This would imply that 
an individual with severe topographical disorientation 
would need at least 25 times longer than an individual 
traveling at the same constant speed. This time may 
be even higher if we account for the time that a 
disoriented individual may require while making 
navigational decisions. This can result in frustration 
experienced by an individual with topographical 
disorientation. 

Figure 3 depicts the exponential relationship 
between the distance traveled by the individuals and 
their level of confusion PC. 

R2 = 0.8899

0

5000

10000

15000

20000

25000

30000

0 0.25 0.5 0.75 1
Pc

D
is

ta
nc

e 
tr

av
el

ed
   

  .

Data

Expon. Fit

 Figure 3: Probability of confusion (PC) Vs. Distance 
traveled. 

 

CONCLUSIONS 

This work shows initial steps towards the 
simulation of the navigational patterns followed by 
individuals experiencing different levels of confusion, 
which could be related to different degrees of 
topographical disorientation. This tool may help in 
understanding the navigational patterns followed by 
individuals experiencing topographical disorientation 
and could reveal possible problems and challenges 
that might be econtered in real life situations. This 
simulation tool enables modeling of multiple scenarios 

in a short time and with no inconvenience to patients. 
Further development and validation of this tool is 
required. 
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