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Abstract-Myoelectric signals undergo spectral compression during 
muscle fatigue, which is largely due to an underlying mechanism of 
decreasing muscle fiber conduction velocity. To examine the effects 
of spectral compression and changes of the conduction velocity on 
the fractal parameters of the myoelectric signals, we evaluate fractal 
indicators extracted from the power spectrum in this context. In this 
study, the myoelectric signals are simulated using a structural 
model. Fractal indicators are computed using a novel general power 
spectrum method. We have previously showed that these indicators 
are capable of sensing force and joint angle independently. These 
experimental results show fractal indicators provide measures 
independent from spectral compression, further demonstrating the 
potential of this form of myoelectric fractal analysis. 

I. INTRODUCTION 

The surface myoelectric signal (MES) provides a 
noninvasive measure of neuromuscular activities and 
electrical behavior of the muscle, and is widely 
employed in biomedical and rehabilitation engineering 
applications [1]. One important application of the 
surface MES is in studying muscle fatigue [1-4]. It is a 
well established that the MES interference pattern (IP) 
undergoes changes during sustained muscular 
contractions; in particular, muscular fatigue is related 
to a compression of the MES power spectrum density 
(PSD) towards lower frequencies [5]. There are many 
factors which contribute to this PSD compression such 
as decreasing firing rate of the active motor units 
(MUs), changes in synchronization of MUs and their 
recruitment strategies, and decreasing muscle fiber 
conduction velocity (CV) [5-6]. It is generally well 
accepted that the dominant underlying mechanism 
leading to the PSD compression is the decreasing CV. 
The true nature of this decrease is not yet fully 
understood; however, it has been suggested that this 
might be caused by the accumulation of metabolic 
byproducts such as lactic acid which causes a 
decrease in membrane excitability and the muscle 
fiber CV [6]. When the CV is decreased, the observed 
MU action potentials (MUAPs) expand along the time 
axis, which causes the frequency content of the MES 
to shift towards lower frequencies. This spectral 
compression can be conventionally monitored using a 
single characteristic frequency, such as the first 
spectral moment, mean frequency (MNF), 50th 
percentile frequency, or median frequency (MDN), 
which is the index most commonly used to track 
muscle fatigue [7-8]. 

Recently, alternative approaches have been 
employed for fatigue monitoring. For example, 

calculating the mean shift in all percentile frequencies 
(i.e. from the 5th to 95th percentile frequency) [9], 
dividing the PSD into a series of frequency bands [10], 
and the spectral distribution technique [11], which is a 
method for detecting small variations in the shape of 
two arbitrary signals. While these new techniques 
provide a more comprehensive indication of PSD 
compression, significant improvement compared to 
single characteristic frequencies is not clear.  

In recent years, techniques developed for the 
analysis of nonlinear and chaotic systems have been 
also applied to MES in context of muscular fatigue by 
a few authors [12-13]. In [12] multi-fractal 
characteristics of MESs based on generalized entropy 
and Renyi dimensions is examined in the presence of 
muscle fatigue and it is shown that the Renyi 
dimensions show a general pattern caused by the 
fatigue; however, results of this study are debatable 
mainly because the Renyi dimensions of this approach 
are calculated based on the Hausdorff definition of 
dimension, with a single slope computed in a bi-
logarithmic plot. We have shown in [14] that this is not 
an efficient way of dealing with MESs because they 
show more general self-affine characteristics 
compared to ideal random scaling fractals (RSFs); 
therefore, the classic power law may not be 
appropriate. In [13] the 1/fα behavior of the MES PSD 
is examined, with a partitioning algorithm. The MES 
PSD is divided into two low and high frequency 
regions with respect to the peak of the PSD and each 
portion is modeled by a single line in the form of an 
ideal RSF. The slope of each line is considered as a 
fractal indicator. The authors conclude that these 
spectral slopes are not sensitive to muscle fatigue 
mainly because they are not changed in a bi-
logarithmic plot when a spectral compression occurs 
(i.e. 1/fα → 1/(βf)α). This piece-wise 1/fα approach, 
applicable to the partitioned power spectrum of MES, 
is potentially accurate computationally; however, there 
is some confusion in this methodology. Firstly, 
considering MES PSD compression to be uniform, as 
discussed by [13], may be too simplistic and is in 
contrast with non-uniform PSD compression reported 
by [9] and [10]. Secondly, this partitioning criterion is 
not necessarily the optimal method for partitioning the 
power spectrum. Thirdly, high and low frequency 
indicators (i.e. spectral slopes) are computed 
separately and how they are related to each other is 
vague. Fourthly, approximating the curve of the MES 



power spectrum with two lines as it is done in this 
approach is not highly efficient, nor representative of 
the true power spectrum. 

In this paper, we will examine effects of 
conduction velocity and spectral compression on 
fractal parameters of simulated MESs, which are 
extracted using a more sophisticated fractal analysis 
method; namely, the general power spectrum method 
(GPSM), as introduced in [14]. The results are 
compared to the piece-wise 1/fα approach. 

II. METHODS AND MATERIALS 

A. Simulations 

Simulated MESs enables the analysis of the 
effects of CV on fractal parameters in isolation, 
removing confounding effects of other physiological 
changes. MESs were simulated using a general 
purpose structural model-based simulator [15]. In this 
simulator, single fiber action potentials (SFAPs) are 
summed and tissue filtered to compose a MUAP, and 
MUAPs are summed to produce the surface MES. Ten 
sets of MESs were generated for each CV value, 
which ranged from 4.5 to 6 m/s in steps of 0.1 m/s. 
Simulations were based on a sustained isometric 
moderate contraction of the biceps brachii and were 
carried out for bipolar electrodes 5 mm apart. The 
simulation parameters were used considering the 
available literature [16] and summarized in Table I. 

Table 1: Simulation Parameters 

Source Duration 3 msec 
Num. of Fibers in MU 40 

Distance from Innervation 
Zone to Electrode 35 mm 

Length of Fiber 210 mm 
Termination Dispersion 1 mm 

Innervation Zone 
Dispersion 1 mm 

Depth of MU 25 mm 
σ = 2.5 mm 

Num. of MU 50 

Firing Rate 20 Hz 
σ = 3 Hz 

Sample Rate 20 kHz 

B. Processing 

The PSD shape is greatly influenced by the PSD 
estimation method; thus, special care should be taken 
since the GPSM is sensitive to the PSD shape. The 
amplitude of the MESs was normalized before PSD 
estimation. The PSD of the MES was estimated using 
Welch’s method [17]. The ergodicity and pseudo-
stationary features of MESs make them well suited for 
such a time slice averaging PSD estimation algorithm. 
For averaging, a Hamming window with a temporal 
width of 512 samples was applied, with a 50% overlap 

between windows. Fractal indictors were computed 
using two methods: the Piece-Wise 1/fα Approach and 
the GPSM. 

Piece-Wise 1/fα Approach: A random scaling 
fractal exhibits self-affinity and its PSD shows 1/fα 
behavior [18]. This behavior represents fractal 
properties of the signal’s structure; that is, as we zoom 
into the signal by changing the scale, the distribution of 
amplitudes remains the same, subject to scaling with a 
single level dimension, which represents the 
complexity of the structure. The PSD of a RSF could 
be approximated by a single line and the slope of that 
line in a bi-logarithmic plot is related to the fractal 
dimension through a linear transformation and could 
be held as a fractal indicator (FI). In piece-wise 1/fα 
approach, the peak value of the MES PSD is used to 
partition the PSD into two regions. Each partition is 
modeled by one line and the bi-logarithmic derivatives 
are considered as FIs. These left slope and right 
slope, correspond to the low and high frequency 
partitions, respectively. 

General Power Spectrum Method: There are 
noise-type signals which exhibit more general fractal 
behavior and show non-linear PSD behavior. In [14] 
we have introduced an irrational power law as Eq. (1) 
which is capable of representing almost any stochastic 
signal with some degree of self-affinity. 
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In Eq. (1), c is a scaling factor, f0 is the characeteristic 
frequency, q is the high frequency indicator, and g is 
the low frequency indicator of the PSD. A signal with 
such PSD is also self-affine in a more general way; 
that is, as we zoom into the signal the probability 
distribution of amplitudes remains the same, subject to 
scaling with a single level complexity factor related to q 
and g, and the characteristic frequency of the 
distributions is also scaled. These parameters could 
also be held as FIs which contain textural information. 
This method provides a fairly accurate and precise 
representation for MES PSD as shown in Fig. (1). 

Statistical analysis was performed using an 
ANOVA with a significance level αT = 0.05. 

III. RESULTS 

In this section, all the plots show the mean and the 
standard deviation of the results, averaged for all ten 
sets of the simulated MESs. Fig. (2), shows a high 
correlation between the MDN and the CV. MDN is also 
significantly affected by the CV (p <0.001).  



Fig.(3) and Fig. (4), show that the spectral slopes 
extracted of the piece-wise 1/fα approach are 
correlated with CV and are significantly affected (p 
<0.001). Fig. (5) and Fig. (6), show insignificant 
changes caused by the CV on the GPSM high (q; 
p=0.096) and low frequency (g; p=0.066) indicators. 
Finally, Fig. (7), shows that the GPSM characteristic 
frequency (f0; p<0.001) is highly correlated and 
significantly affected by the CV. 
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Figure 1: MES PSD and its model using GPSM for two 

different values of CV. Compression towards lower 
frequencies is noticeable when CV is decreased.   
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Figure 2: Median frequency vs. CV 

 IV. DISCUSSION 

 Results show that spectral slopes extracted using 
the piece-wise 1/fα approach are sensitive to changes 
of the CV which is in contrast to the results of [13]. 
This could be explained by the fact that the spectral 
compression is not uniform, mainly because of the 
tissue filtering effects; however, the PSD estimation 
criteria and the variability of the estimated slopes from 

the human subject data may be masking this 
sensitivity, causing the contrast in results. 
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Figure 3: Piece-wise 1/fα method’s left slope vs. CV 
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 Figure 4: Piece-wise 1/fα method’s right slope vs. CV 
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 Figure 5: GPSM’s high frequency indicator (q) vs. CV 
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 Figure 6: GPSM’s low frequency indicator (g) vs. CV 
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 Figure 7: GPSM’s characteristic frequency (f0) vs. CV 

 On the other hand, the high and low frequency 
indicators achieved by the GPSM are insensitive to 
spectral compression when CV is decreased up to 
75% of its initial value. This could be explained by the 
fact that the distribution of the SFAPs is not changing 
when the CV is changed, they are only scaled and 
their characteristic frequency is altered. 

V. CONCLUSIONS 

In this paper GPSM was evaluated in context of 
muscle conduction velocity and spectral compression. 
The FIs obtained by this method are insensitive to CV. 
This is interesting because these parameters are 
sensitive to force and joint angle [14]. This suggests 
that these FIs could be used as a measure for force 
and joint angle independent of fatigue. It was also 
demonstrated that the spectral slopes extracted by 
piece-wise 1/fα are sensitive to non-uniform spectral 
compression of the MESs when CV is changed. 

These results are encouraging and motivates 
further research into the GPSM, in the context of 
muscular fatigue; this will include experimental work 
involving human subjects. 
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