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Abstract – A system was designed to estimate the 
number of motor units (MUNE) in a superficial muscle 
using incremental stimulation of a motor nerve 
followed by classification of the collected M-waves.  In 
earlier work we used the Fourier power coefficients as 
pattern classifiers. The work presented examines the 
shift-invariant wavelet transform as an alternative M-
wave classifier. The shift-invariant wavelet transform 
pattern classifier is compared to classification with the 
traditional wavelet transform vectors.  Data to test the 
two approaches was obtained from the thenar muscles 
of six healthy subjects. The results show that the shift-
invariant wavelet transform compensates for latency 
shifting and is superior to the traditional wavelet 
transform in classifying M-waves with smaller intra-
class variances. 
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I. INTRODUCTION 

 
In the study of neuromuscular disease, the number 

of functional motor units (MUs) in a muscle provides 
quantitative information to assess the severity of and 
to determine the course and responsiveness to 
treatment for the disorder.  Several motor unit number 
estimate (MUNE) techniques exist [e.g. 2] but there is 
still room for improvement in both the sensitivity and 
reliability of the estimates.  Previously we developed 
an automated system [1] based on the incremental 
manual method proposed by McComas et. al. [3].  In 
this technique the motor nerve is incrementally 
stimulated to give a family of unique M-waves known 
as the composite response (CR) shown in Figure 3.  
The technique assumes that each successively larger 
M-wave results from the recruitment of one additional 
motor unit action potential (MUAP).  Alternation, the 
phenomenon of a single stimulus amplitude eliciting 
different combinations of M-waves, limits the number 
of unique M-wave templates comprising the CR.  The 
MUNE is obtained by dividing the maximal obtainable 
M-wave by the size of the mean MUAP contribution as 
determined by the CR.  Thus, errors in the CR due to 
misclassification of M-waves lead to poor estimates of 
the number of motor units in the muscle.  In the 
original work, the CR was created using a standard 
pattern recognition scheme to class identical M-waves 

that differed solely due to additive noise.  The Fourier 
transform was applied to each recorded M-wave in 
real time and the power spectral coefficients used to 
classify it as a new response class or as a member of 
a previously obtained class.  In a more recent attempt 
[4], wavelets, because they are applicable to non-
stationary data, were used to classify the M-waves, 
with the results showing improvement over the power 
spectral coefficient classification scheme.  
Unfortunately, due to latency shifting, for repetitive 
stimuli the collected M-wave responses may be time-
shifted versions of each other.  One inherent drawback 
of the wavelet transform is its sensitivity to translation 
and the classification scheme in [4] was found to 
misclassify M-waves when latency shifts were present.  
In this paper we investigate the improvement a shift-
invariant wavelet algorithm lends to classifying the M-
waves obtained from sub-maximal stimulation of the 
motor nerve.  The results are compared to those 
obtained with the traditional wavelet transform using 
data collected from the human thenar muscle. 
 

II. SHIFT-INVARIANT WAVELET 
 

In biomedical applications such as EMG, signals 
are non-stationary and exhibit transient characteristics.  
As the Fourier transform contains only frequency 
characteristics and does not retain time information of 
the original signal it is not the ideal decomposition tool 
for such data.  Contrarily, wavelet decomposition 
achieves high time-frequency resolution and is well-
suited for transient signals such as the M-wave.  In 
wavelet analysis, the signal is decomposed into a 
series of scaled and shifted versions of a mother 
wavelet.  The transform results in a series of wavelet 
coefficients that are dependent on the scale and 
position of the mother wavelet.  The wavelet transform 
effectively acts as a correlator between the shifted, 
scaled mother wavelet and segments of the signal.  In 
practice, the discrete wavelet transform is efficiently 
implemented with a two-channel sub-band coder using 
quadrature mirror filters [6].  In this implementation the 
signal is passed through high and low pass filters to 
produce two new signals which are subsequently 
down-sampled to correct for doubling in the data.  The 
decomposition process is iterative with each 
successive level decomposing the low frequency 
components of the signal into smaller frequency 
bands.  Unfortunately, the wavelet transform is 



sensitive to translation and the wavelet coefficients of 
two signals may differ greatly even when the two 
signals are merely time shifted versions of each other.  
This complicates pattern recognition when the signals 
are to be classed based on shape and amplitude, as in 
M-wave pattern recognition, and not on time delays.   

Several shift-invariant wavelet algorithms serve to 
correct this problem.  The multi-scale wavelet 
representation (MSWAR) [5] produces shift invariance 
by a modification of the Mallat algorithm as shown in 
Figure 1.  For each level of decomposition the signal is 
passed through the quadrature mirror filters.  
Additionally, the original signal undergoes a circular 
shift by 1 and this shifted version is passed through 
the same filters.  The resulting outputs are down-
sampled and combined to produce the wavelet 
coefficient vectors at each level.  These vectors 
contain information from both the original signal 
decomposition and the decomposition of a circularly 
shifted version of the original signal.  The process is 
repeated for all levels of decomposition.  Though this 
algorithm is computationally more involved than the 
traditional wavelet transform it is invaluable for the 
pattern recognition of translated signals. 

 
 

III. METHODOLOGY 
 

Subject Set-up:  The recording electrodes were made 
from disposable self-adhesive ECG electrodes (Tyco 
Healthcare Group, Mansfield, MA).  The recording 
electrode was constructed by cutting the 25mm by 
23mm electrode longitudinally.  The halves were 
placed end to end over the thenar eminence to cross 
the first metacarpal bone perpendicularly at the 
junction of its proximal and middle thirds as shown in 
Figure 2.  An additional half of an ECG electrode, used 
for reference, was attached to the proximal phalanx of 
the thumb.  A ground electrode was located at the 
dorsum of the hand.  Moreover, the stigmatic and 
reference electrodes were connected to the amplifier 
via a shielded cable to reduce the effect of external 
noise. 

   

 
Data acquisition:  The stimulator used for this system 
was a Digitimer DS7 (AM Systems, Sequim, WA) 
constant current isolated stimulator.  A trigger pulse 
was invoked by the software through one of the digital 
outputs on the data acquisition board at a rate of 1 Hz.  
The stimulating pulse width was set to 100 
microseconds to minimize patient discomfort.  The 
stimuli were delivered through 6 mm diameter 
stainless steel electrodes mounted 1.8 cm apart on a 
plastic bar.  The plastic bar was strapped over the 
median nerve proximal to the wrist.  The bar position 
was moved slightly on initial set-up to find the optimal 
placement.  This was the position where there was 
little lumbrical co-stimulation.  The stimulus amplitude 
level was manually controlled during this experiment.  
All recorded signals were amplified and band-passed 
filtered using an A-M Systems 1700 differential 
amplifier (A-M Systems, Sequim, WA) with high-pass 
and low-pass settings at 10 Hz and 500 Hz 
respectively.  The gain of the amplifier was set at 1000 
for all subject collections.  All signals were sampled at 
4 kHz and collected through a National Instruments 
data acquisition board. 

Data acquisition was facilitated by a Labview 
program which controlled the stimulator trigger, the 
collection and display of 50 ms of pre-stimulus and 50 
ms of post-stimulus data, and the signal processing 

Figure 1:  A 3-level shift-invariant MSWAR [5]. 
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:  Interpolate, shift and add 

Figure 2: Electrode placement. 



and pattern classification of the recorded M-waves.  
The program was developed to provide ongoing real-
time displays of the automatically identified templates 
and the number of M-wave members in each.  This 
information aided the operator in selecting the 
stimulator amplitude as this parameter was under 
manual control.  Additionally, the program used the 
template set and the maximum M-wave to estimate the 
number of motor units in the muscle.  The work 
presented here is primarily concerned with the M-wave 
classification component of this process and the 
details of the MUNE will be omitted.  
     For each subject, the experiment began by 
recording the maximum M-wave.  Subsequently, the 
sub-threshold responses were collected by stimulating 
the nerve at 1 Hz while the stimulus amplitude was 
gradually increased by a trained operator.  For each 
collection, a variance check of the pre-stimulus, a 60 
Hz periodic noise reduction based on coherent 
detection and the removal of the stimulus artifact were 
performed.  The response was then band-limited to 20 
to 500 Hz and classed into a previously defined 
template or into a new template class.  

The classification was performed based on one of 
two pattern recognition schemes, selectable on the 
Labview front panel at the onset of the experiment.  
The first pattern recognition scheme used, as a feature 
set, the coefficients generated by a 3-level wavelet 
decomposition of each M-wave response.  The 
Daubechies 5 wavelet was chosen because it is 
similar in shape to the typical M-wave responses.  The 
sum of the Euclidean distances between the 3

rd
 level 

approximation vector and all 3 detail vectors of the 
wavelet decomposition of the current M-wave and the 
already established templates was then calculated.  
This distance was compared to a discriminatory 
threshold to either create a new template or allocate 
the M-wave to an already defined one.  If the M-wave 
was allocated to a previously existing template, the 
template was updated to be the average of all M-
waves assigned to it.  The alternative pattern 
recognition scheme used the 3-level shift-invariant 
wavelet algorithm shown in Figure 1.  The M-wave 
classification scheme was the same as for the 
traditional wavelet approach.  The effects of alternation 
were limited by requiring a minimum of 3 M-wave 
members to a class before considering that class a 
unique M-wave template.  For the experiment, the 
discriminatory threshold was kept constant across all 
subjects at a value found optimal in previous work [4].   
 

IV. RESULTS 
  

A study was conducted using the left and right 
thenar muscles of 2 healthy males and 4 healthy 
females, age ranging from 21 to 60.  The subjects 

were not known to have any neuromuscular problems 
and gave informed consent for the study which was 
approved by the REB of Hamilton Health Sciences, 
Hamilton, ON, Canada.  For each subject, 20 M-wave 
response templates were collected.  The collection of 
additional templates was hindered by motor unit 
alternation at the higher stimulus amplitudes.  Figure 3 
shows the first 12 M-wave templates in a typical CR 
for one subject generated using the traditional wavelet 
transform pattern recognition scheme.   

 
To determine how well the traditional wavelet 

pattern recognition scheme performs in comparison to 
the shift-invariant wavelet transform a measure of 
intra-class distance within M-wave templates was 
calculated.  It was decided that this was an adequate 
measure because two identical but time-shifted M-
waves have different wavelet coefficients due to the 
traditional wavelet transform’s inherent translational 
sensitivity.  Thus, the Euclidean distance calculated 
between these two M-waves during the pattern 
recognition scheme will be close to the threshold value 
and will be largely different from either the intra-class 
or inter-class averages.  Thus, the standard deviation 
for both intra-class and inter-class distances will be 
larger.  The shift-invariant wavelet does not generate 
largely different coefficients for translated M-waves.  
The resulting Euclidean distance between two such 
recordings will be minimal and translated M-waves will 
be classed together.  It is expected then, that the 
standard deviation in the intra-class distance measure 
for the M-wave templates created using shift-invariant 
wavelet pattern recognition will be smaller than those 
created using traditional wavelet pattern recognition.  
Figure 4 shows the average intra-class Euclidean 
distance for each subject with both pattern recognition 
schemes.  The Euclidean distance calculations were 

Figure 3: The CR of M-wave templates recorded 
from a thenar muscle using wavelet pattern 
recognition. 



normalized so that comparisons between subjects and 
between pattern recognition techniques are 
meaningful.  It is evident that the intra-class distances 
for shift-invariant wavelet pattern recognition exhibit 
less variance.  This is particularly apparent for subjects 
4, 5, 7, 8 and 11.  The improvement is not seen across 
all subjects, as latency shifting is not always present in 

the recorded data.  When the electrical stimulus is 

applied to elicit an evoked response in a muscle, 
action potential generation is dependent on the voltage 
field in the tissues under the stimulating electrode and 
is most likely to occur at the nodes of Ranvier.  
Latency shifting occurs when the most distal node 
near the cathode is hovering around the activation 
threshold, causing action potential generation to 
alternate between this node and the adjacent node 
closer to the cathode on successive stimulations.  

Thus, latency shifting is associated with the number of 
repetitive stimuli.  Table 1, shows the number of 
administered stimuli per subject.  The highest numbers 
of stimuli correspond to subjects 4, 5, 7, 8 and 11.  
The results are as expected with these subjects 
experiencing the greatest reduction in variance with 
shift-invariant pattern recognition.  

 
Table 1:  Number of administered stimuli per subject 
Subject 1 2 3 4 5 6 

No. Stimuli 75 166 189 255 249 188 
       

Subject 7 8 9 10 11 12 

No. Stimuli 257 371 127 220 212 166 

 
 

V. CONCLUSIONS 
 

The real-time LabVIEW system developed for this 
work provides a practical and reliable approach for 
collecting and recognizing evoked M-wave responses.    
The shift-invariant wavelet features appropriately class 
latency shifts and are more applicable to the 
classification of M-waves than the traditional wavelet 
transform coefficients.  At present a more robust 
alternation detection algorithm is being developed.  
This algorithm will be implemented in a modified 
system to test patients with motor-neural diseases. 
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Figure 4: Average intra-class normalized Euclidean 
distances over all recognized templates found using 
(A) traditional wavelet transform or (B) shift-invariant 
wavelet transform for each subject.  
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