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INTRODUCTION 

Localized muscle fatigue has been described by 
De Luca [1] as a type of physiological fatigue induced 
by sustained muscular contraction and associated with 
a reduced capacity to maintain a given output force 
level.  This reduction in ability is the result of changes 
in the physiological processes within the muscle. In 
order to assess the level of fatigue a muscle is 
experiencing, these changes must be somehow 
monitored and quantified.  Directly tracking the 
physiological processes in a muscle as it performs a 
contraction is a very difficult and impractical task, 
however, monitoring the surface myoelectric signal 
(MES) is a non-invasive way to observe the electrical 
manifestations of the physiological events.  
Myoelectric parameters such as conduction velocity 
[2], mean and median frequency [1] and instantaneous 
mean frequency [3] have all been investigated in 
search of a myoelectric parameter which most 
accurately estimates fatigue.  When muscle force and 
joint angle are constrained to be fixed for the duration 
of the contraction, hereon termed a static contraction, 
evaluation of the mean frequency (MF) has emerged 
as the gold standard for muscle fatigue assessment.  
However, under dynamic conditions, when muscle 
force and joint angle are unconstrained, other factors 
have an effect on the frequency content of the surface 
MES and therefore on its calculated MF. The most 
notable of these effects is the time-varying spatial filter 
which results as detectable motor units move relative 
to the detecting electrodes. [1] These confounding 
conditions make it very difficult to find a single 
parameter which can estimate fatigue under dynamic 
conditions.   

To overcome these limitations, MacIsaac has 
developed a multivariable approach which considers 
multiple parameters extracted from the MES and uses 
an artificial neural network (ANN) to adapt a function 
which tracks fatigue. [4] This methodology, known as 
the mapping index (MI), requires baseline data 
collected from each participant in order to train the 
individual functions.  Fatigue may then be estimated 
from subsequent data using the trained function.  
While this approach has yielded a significant 
improvement over MF when estimating fatigue under 

dynamic conditions, collecting baseline data in a 
practical context may not be feasible. 

This work is an extension of MI and proposes a 
generalized function which is trained using baseline 
data from multiple individuals.   

METHODOLOGY 

The goal of this work was to compare the ability to 
estimate fatigue of the generalized mapping index 
(GMI) to that of MI and MF under static and dynamic 
contraction conditions.  Five healthy participants, 2 
female and 3 male, aged 25, 22, 19, 30 and 26 
completed two sets of fatigue tests (baseline and test 
data).  Each set consisted of three fatigue tests, one 
for each of static, cyclic and random contractions, 
totaling six tests per participant. 

A third set of data consisting of static, cyclic and 
random data from four participants previously collected 
by MacIsaac [4] was added to the baseline data to 
train the GMI functions.  The baseline data was used 
to train the individual functions according to the MI 
methodology and the test data was used to estimate 
fatigue using both the GMI and MI functions. 

Fatigue Test Protocol 

In order to maintain consistency among data sets, 
the testing protocol, apparatus and data acquisition 
system previously described by MacIsaac [4] was 
implemented.  MES was collected from the right 
brachial biceps muscle as the participant performed 
the prescribed contraction with each participant using 
a weight of approximately 30% of maximum voluntary 
contraction at 130º joint angle. An ergometer attached 
to the apparatus allowed visual feedback to the 
participant in the form of an onscreen bar plot.  By 
following as closely as possible a second, computer-
generated bar plot, the user performed the desired 
contraction.   

In order to confirm a fatiguing process, dynamic 
(cyclic and random) contractions were interrupted for 
the first ten seconds of each minute. During this time a 
static contraction was held at 90º joint angle and a MF 
calculation was done.  A statistically significant 



negative slope of these readings was used to confirm 
that the muscle had fatigued. 

Data Processing 

The intermittent periods of static contraction, 
termed fatigue confirmation segments, were removed 
from the data.  For static contractions, the first ten 
seconds of each minute was used and for dynamic 
contractions, the joint angle data was used to identify 
the appropriate portions.  Fatigue was confirmed using 
a regression analysis of MF values, one per segment, 
each calculated from a periodogram estimated by 
averaging 0.5 s, 50% overlapped Hamming windows.  

The remaining dynamic MES was segmented as 
follows: static and random data were divided into equal 
length 5 s. segments and cyclic data was segmented 
with one cycle per segment, beginning and ending at 
the minimum joint angle. While the cyclic segments 
were invariably different lengths, the period of the 
cyclic contraction was approximately 5 s. 

Myoelectric parameters which form a feature 
vector that characterizes each segment were then 
extracted.  The set of four time-domain parameters 
were those used by MacIsaac [4] and previously 
described by Hudgins [5]: mean absolute value, the 
number of zero crossings, the number of slope sign 
changes and the waveform length.  These parameters 
are well suited to characterizing fatigue because they 
are easy to calculate and provide information about 
both the amplitude and frequency content of the MES, 
parameters that have been shown to vary with fatigue. 
[1] 

Function Training 

The individual functions were trained with the 
baseline data from a single fatigue test corresponding 
to the participant and contraction condition. A fully 
connected multi-layer perceptron (MLP) network with 
four input neurons and one output neuron was trained 
with a backpropagation algorithm as MacIsaac found 
this network architecture outperformed others. [4] The 
set of feature vectors was divided into training and 
validation data such that feature vectors from 
segments 1,3,5,.. formed the training data and feature 
vectors from segments 2,4,6,… formed the validation 
data.  While training the MLP, the validation data was 
used to verify the progress of the training and to 
implement an early stopping criterion based on a 
sufficiently low output RMS error when comparing the 
network outputs to the desired outputs. 

In order to provide a complete set of training data, 
the desired outputs must accompany the set of training 
and validation inputs.  It was assumed that fatigue 

progressed in a linear, monotonically decreasing 
fashion beginning at 1 (no fatigue) at the start of the 
contraction and ending at 0 (completely fatigued) at 
the end of the contraction.  While the true nature of the 
progression of fatigue remains largely unknown, the 
linear assumption is sufficient to demonstrate the 
feasibility of the MI and GMI methodologies.   

When training a generalized function, the same 
MLP ANN architecture was used.  Considering the 
previously collected data and newly collected baseline 
data as a single large set of baseline data from nine 
participants, the function which will estimate fatigue for 
a particular participant and contraction type was 
trained using the baseline data of the other eight 
participants under the same contraction conditions.  
Multiple data sets were combined into a single large 
training set by concatenating the individual training 
sets, each complete with corresponding targets.  A 
single validation set was formed similarly. 

Estimating Fatigue 

With the GMI and MI functions trained, they were 
then used to estimate fatigue from the test data.  A 
fatigue estimate is comprised of the sequence of 
outputs from the trained function when presented with 
the myoelectric feature vectors from the test data in 
chronological order.  A comparison of results was then 
made where the figure of merit for fatigue assessment 
was the signal to noise ratio (SNR) defined as: 
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where s(n) is the fatigue estimate and ŝ(n) is the line of 
best fit of s(n). 

RESULTS 

Figure 1 shows a sample of MI, GMI and 
normalized MF fatigue estimates from the test data 
under static, cyclic and random contraction conditions.  
These results were typical of all subjects.  Figure 2 
shows the SNR values of the fatigue estimates 
averaged across participants.  To compare the various 
indices of fatigue, a Bland and Altman analysis [6] was 
completed.  Table 1 lists the 90% confidence intervals 
for the mean bias between pairs of measurements 
under each contraction condition. If a mean bias of 
zero is not within the given confidence interval, then it 
can be inferred that the measurements are statistical 
different. 



Examination of Table 1 leads to the conclusion 
that there was a significant difference between GMI 
and MF under all contraction conditions and that there 
was no significant difference between GMI and MI, nor 
between MI and MF under all contraction conditions.  

 

DISCUSSION 

From the statistical analysis it can be concluded 
that GMI performs as well as MI under all contraction 
conditions. That is, functions trained from the baseline 
data of other individuals can estimate fatigue as well 
as those trained from the baseline data of the 
individual.

 
Figure 1: GMI, MI and normalized MF fatigue estimates from test data of participant 7 under static, cyclic and 

random contraction conditions
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Figure 2: Signal to noise ratios averaged across 
participants for MI, GMI and MF fatigue estimates from 
test data. 
 
 
Table 1: Bland and Altman mean bias 90% confidence 

intervals for comparing GMI, MI and MF fatigue 
estimates. 

Mean bias 90% confidence interval Contraction 
Conditions 

Indices compared Lower 
bound 

Upper 
bound 

MI GMI -1.44 1.90 

MI MF -0.555 7.92 

Static 

GMI MF 0.798 6.10 

MI GMI -3.36 6.98 

MI MF -0.936 8.30 

Cyclic 

GMI MF 0.109 3.64 

MI GMI -3.23 1.40 

MI MF -1.44 4.95 

Random 

GMI MF 0.563 4.77 

 
 

Inspection of the confidence intervals comparing 
MI to MF shows that several nearly exclude zero.  It is 
possible that with further investigation using a larger 
number of participants that a statistically significant 
difference might be found 

It was observed in many subjects (and visible in 
Figure 1) that fatigue often appears not to progress in 
a linear manner but often follows a curvi-linear or 
piece-wise linear path.  This suggests that the use of 
non-linear targets when tuning the functions bears 
further investigation. 

It was also noted in some subjects that MF 
estimates were highly variable, leading to a low SNR 
while MI and GMI were unaffected.  It is believed that 
this emphasizes the strength of the multivariable 
approach to fatigue estimation, allowing other 
parameters to be emphasized when one appears less 
correlated with fatigue. 

The MI and GMI methodologies have yet to be 
thoroughly optimized.  Ongoing research is examining 
richer feature sets such as those extracted from the 
time-frequency representation of the MES.  Other 
parameters such as the segment length and the 
selection of targets, as previously mentioned, are also 
under investigation.  It is hoped that with further honing 
of this methodology that a significant improvement 
over MF will be achieved at a confidence level of at 
least 95%. 

CONCLUSION 

This work has shown the ability to train a 
generalized function to estimate fatigue from the data 
of different individuals.  This represents substantial 
progress toward the development of a clinically viable 
tool for localized muscle fatigue assessment under 
dynamic contraction conditions. 
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