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ABSTRACT 

This paper describes a biomimetic vision platform 
that tracks moving targets with self-generated pursuit 
and saccadic intervals. Extensions to the controller 
add image analysis capabilities that provide a measure 
of prediction and low-level target selection. A model for 
the bottom-up control of visual attention in primates is 
presented and experimentally tested in the platform. 
Given an input image, the system predicts which 
location in the image will automatically and 
unconsciously shift a person’s attention towards it. 
Target selection relies on the extraction of a pair of 2D 
feature maps based on spatial discontinuities in the 
modalities of intensity and velocity (brightness and 
slip). Both maps are then combined into a single 2D 
“saliency map” which encodes the desired features for 
each pixel in the scene, irrespective of the particular 
feature which detected this location as conspicuous. A 
winner-take-all system then detects the highest-
salience point in the map at any given time, and draws 
the focus of attention towards this location. That allows 
the selection of a target in a visual scene containing 
multiple distractors without the need of first 
recognizing the objects. The intensity of the target is 
also embodied into the gains of the controller altering 
the alertness of the anthropomorphic robot with 
respect to the brightness of the target. The parallel 
observation of multiple targets and the tracking of the 
most salient one enhance further the biomimetic 
nature of the robot allowing its controller to judge the 
significance of a target that suddenly comes into its 
visual field. 

INTRODUCTION 

Our biomimetic bilateral controller [1] is based on 
the physiological evidence that smooth pursuit -that is 
the slow phase movement of the eyes- and saccade- 
their fast phase movement- are handled by the same 
neural circuitry. At any instant the bilateral model is in 
only one phase, and the mode of operation can be 
altered via internal switching. During the smooth 
pursuit phase, the bilateral controller is composed of 
 

 

two unilateral controllers operating within a visual 
feedback loop (Figure 1).   

The only visual input to the system is the visual 
(retinal) error, e, from each ‘eye’. Internal models are 
used to monitor eye position: Given an accurate model 
M of the actual plant P, it is sufficient to feed the plant 
model with the same drive D as the plant.  This 
provides an efference copy E* of the output E. Then, 
the actual eye position E is compared against target 
position T to produce a visual error e. This error is 
mapped from sensory signal to motor signal i, suitable 
as input to the butterfly.  This task is transparent to the 
controller which must drive the motor errors to zero 
through the feedback loop. 

The left and right sides are connected via the 
cross-midline gain, which stems from reports of strong 
coupling by the commissural connections, and of 
interconnections between the vestibular nuclei across 
the midline [1]. During saccades projections across the 
midline are removed, so the system controls each eye 
independently based on its own retinal error.  

 
Figure 1: Smooth Pursuit Bilateral Controller. Vision 

provides a close loop to the controller. A delay is 
required to model the processing delay. Subscript L 

(R) stands for left (right) eye. 



The implementation [6] of a previous theoretical 
work [4] in actual hardware resulted in a binocular 
robotic system with horizontal and vertical movements 
embodying derivative and integral signals (PDI) in the 
pursuit and the saccadic modes. 

THE ROBOT’S HARDWARE 

Our robotic platform (Figure 2) consists of a stereo 
vision system that is attached to a neck (the robotic 
head is fully described in [5]). The robot, is able to 
make a variety of movements in order to track targets, 
namely slow pursuit (slow phase), saccades (fast 
phase), conjugate and vergence. The platform has six 
degrees of freedom; each eye has an independent 
horizontal and vertical axis of rotation whereas the 
neck can produce both yaw and pitch movement. Each 
robotic eyeball consists of embedded color ELMO 
CCD MN401E cameras, which provide an NTSC 
signal to the frame grabber at 30 frames per second. A 
Pulse Width Modulation Module TL494 converts DC 
voltage into PWM signals in order to drive the four 
digital servo motors of the cameras. The robotic 
platform is attached to an INTEL P4 1.6 GHz operating 
on a Windows 2000 platform. The workstation serves 
as the sensory processing engine and implements the 
bulk of the robot’s perception and attention systems. 

THE PHYSIOLOGICAL MODEL OF VISUAL 
ATTENTION 

Koch and Ullman [3] originally and Niebur [7] 
subsequently elaborated Caltech’s hypothesis which 
 

 
Figure 2 : Block diagram of the robotic implementation. 

represents one of the most tangible analyses of the 
cortical areas involved in the mechanism of controlling 
the visual attention. The authors also described a 
computational model that matches our implementation, 
namely the saliency-based model of visual attention. 

 Based on the Itti et al. [2] implementation of the 
model, we developed and experimentally tested a 
model that estimates the extent of salient objects that 
solely depend on bottom-up information. Using low-
level features and with negligible additional 
computational cost, the image region containing the 
attended objects is extracted from the scene.  

The model is in accordance with the known 
anatomy and physiology of the visual system of the 
macaque monkey [8] and comprises two interacting 
stages: The first stage is a fast and parallel pre-
attentive extraction of visual features across the spatial 
maps (for brightness and motion). The brightness 
feature is computed by calculating the mean intensity 
of each blob (an area with uniform brightness in the 
image) detected inside the visual field of the robot. The 
motion is approximated by taking the first derivative of 
the X and Y Center of Gravity (CoG) coordinates for 
each blob. Each one of the computational branches is 
multiplied by a gain. The second stage is an altering 
speed focal attention shifting mechanism that uses a 
Winner-Take-All mechanism to select the most 
conspicuous image location. 

The link between the two stages is a saliency 
map, which topographically encodes for the local 
conspicuity in the visual scene, and controls where the 
focus of attention should currently be deployed. A final 
step of the model is required in order to detect the 
most salient target among other potential blobs. 

When multiple blobs are found, the selection of the 
most salient one is based on the calculation of the 
value 
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       for each blob K. 

The gains α and β can have different values 
depending on the feature (intensity or speed) that we 
want to favor. In the experiments to be described, the 
different spots’ intensities have a small standard 
deviation (10 pixels, around 0.5 degrees) with a mean 
value of 245 in order to detect as small blobs as 
possible yet avoiding perturbations, under the 
presence of unavoidable recording noise. Hence, the 
speed was selected as the dominant saliency factor by 
using α = 0.1 and β = 0.9. 



Our model does not consider the shape and extent 
of the attended object in determining the attended 
area. This conforms with the way the human eyes 
home in on a moving target, since commonly attention 
is believed to act before the visual recognition of the 
objects. (However, experimental evidence suggests 
that attention can be tied to objects, object parts, or 
groups of objects [8]). 

The controller, with the addition of the multiple 
target detection feature, can handle a single target 
without any difference from the controller presented in 
[4]. However, when two or more targets are presented 
in the robot’s visual field, a new process is introduced 
in sequence with the already existing computations. 
The output of that process is the COG coordinates of 
the most salient target. Hence, the process of target 
tracking as described previously is transparent to the 
controller: once the most salient target is recognized, 
its coordinates are given to the controller and the rest 
of the process remains as in [4]. 

ALERTNESS OF THE ROBOT 

The retina projects to only about 10-20% of 
geniculate cells. Two layers of large cells are believed 
to be devoted to movement of the image in the two 
retinae. The remaining layers are of smaller neurons 
(cell bodies) and analyze the two images for color and 
for picture details. The remaining majority of input to 
the geniculate comes from other brain regions. This 
data apparently influences the projection to the visual 
cortex. Part of the afferent geniculate inflow is from the 
reticular system. Among other functions, this gigantic 
and diffuse mass of neurons governs the level of 
consciousness (and attention). At least a certain 
amount of this circuitry is a feedback loop. Hence, it 

can be argued that not only does the level of alertness 
affect what we "see" but also what we see affects our 
level of alertness and concentration.  

For robot and human to be able to direct one 
another's attention to objects in the scene, the robot's 
visual attention control mechanism should be capable 
of functioning like that of a person. Therefore, we 
propose that visual alertness in the humanoid robot, 
since it is based on a model of human visual attention, 
also depend on the viewable object. In our biomimetic 
robotic implementation, this fluctuating level of 
alertness is implemented by altering the bandwidth: A 
system with a narrower bandwidth responds more 
sluggishly to a step input, ie. a non-expected  target 
that is suddenly presented on its visual field. In the 
experiments to follow, the controller’s bandwidth is a 
linear function of the perceived salient target’s 
intensity, but could also include slip. 

RESULTS 

In the experiment presented in Figure 3, two 
targets (laser dots) of nearly equal mean intensity are 
moving in the robot’s visual field. One target is moving 
in a sinusoidal horizontal trajectory and the other is 
stable 2 degrees below the first one. 

The first (moving) target is not present throughout 
the entire experiment. For a certain period of time, we 
drive the target to a spot that is not visible to the 
robotic eyes. For these periods, only one (the stable) 
target is visible and the eyes fixate on it. As soon as 
the moving target is re-introduced to the visual field, 
the eyes leave the stable spot and follow the fastest 
(and hence the most salient) target. 

 

 
Figure 3. Individual Horizontal and Vertical Dimension of the experiment. The controller conjugate response 

(black thick line) follows the B target (gray thick line) and only on the absence of it, it fixates on A (dotted line). 



 
Figure 4. Experimental Response of the Horizontal Pursuit Controller under the presence of two targets with 

different intensities and velocities. The conjugate retinal error is drawn with a thin dotted gray line.

In the experiment shown in Figure 4, a very bright 
(with maximum mean intensity) light spot, A is used as 
a stable target and a laser dot B is used as a moving 
target with slightly lower mean intensity. A is fixed in 
the plane of B’s horizontal movement and is located 
nearly 5 degrees away from the right sinusoid peak. 

The robotic head follows B accurately during the 
movement of the target in the left plane with respect to 
the origin. However, as the eye trajectory approaches 
the right peak of the sinusoid, its speed becomes 
gradually zero. The criterion C, described in equation 
(1) for B, becomes smaller than the corresponding C 
for A. Hence, the pursuit controller response is driven 
further from the peak of the sinusoid and lands on A.  

The eyes stay on the stationary dot as long as    
CB ≤ CA. As the sinusoid target moves away from the 
peak of its trajectory, it speeds up. When the speed 
reaches a certain threshold, the controller decides that 
the moving target is again the most salient target. The 
changes on the controller’s decisions regarding the 
most salient target can also be observed by the 
sudden peaks introduced in the conjugate retinal error 
at the moment when the eyes leave one target for the 
pursuit of the other. 

CONCLUSION 

In this paper, a model for the bottom-up control of 
visual attention in primates was presented and 
experimentally tested in a humanoid robotic device. It 
may serve as an initial step for subsequent object 
detection. An implementation of techniques for object 
recognition could guide the robot to survive in an 
unknown environment. At this point, the binocular 
robot reacts to the visual scene simply on the basis of 
brightness and of moving CoGs. Two principal 
approaches - decision-theoretic and structural – could 
also be used in order for the robot to “learn” from 
sample patterns. 

In a modification to the spotlight metaphor and the 
robotic alertness already described, supervised 
learning can be introduced in a future work to bias the 
relative weights of the features in the construction of 
the saliency map and achieve some degree of 
specialization towards target detection tasks. 
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