
SEIZURE PREDICTION BY NONLINEAR SMOOTHNESS ANALYSIS OF SCALP EEG 

RECORDING 

Amir H. Meghdadi1, Reza Fazel-Rezai1,2, and Yahya Aghakhani3 

1
Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada R3T 5V6 

2
Institute for Biodiagnostics, National Research Council (NRC), Winnipeg, MB Canada, R3B 1Y6 

3
Department of Internal Medicine, Health Sciences Centre, University of Manitoba, MB, Canada R3A 1R9 

 Emails: {Meghdadi, Fazel}@ee.umanitoba.ca, yaghakhani@exchange.hsc.mb.ca 

I. INTRODUCTION  

Epilepsy is a neurological disorder which causes 
sudden bursts of synchronized brain activity named 
seizure. One of the most disabling aspects of the 
epilepsy is the unexpected instantaneous strike of 
epileptic seizures which can be a serious threat for the 
patient. Despite the apparent clinical unpredictability of 
the epileptic seizure, it has been shown that the 
transition from an interictal state to ictal state in 
epileptic brain may undergo a pre-ictal state in which 
the brain dynamics may have change. Nonlinear time 
series analysis of EEG signal is one of the powerful 
methods in detecting this preictal state and thus 
predicting an impending seizure  [1]- [3].  

There are major challenges, however, for 
application of these methods in complex and noisy 
EEG signals. Most of the applications of seizure 
prediction methods so far  [1]- [3] have been 
concentrated on intracranial EEG (IEEG). IEEG is an 
expensive and invasive recording method which is 
usually performed only for pre-surgical evaluations. 
Surface scalp EEG, on the other hand can be 
recorded easily while it is much more susceptible to 
noise and artifact. Therefore, a reliable seizure 
prediction method based on scalp EEG recording with 
high robustness to noise is very demanding. In this 
paper, a univariate nonlinear measure has been 
proposed for seizure prediction using scalp EEG. The 
method is based on a modified robust measure of 
determinism using smoothness analysis  [7] [8] [10] of 
the attractor in the phase-space. In this paper, it first 
shown that the proposed method is highly robust to 
added noise. The measure is also calculated here for 
EEG segments and its variation is studied before an 
epileptic seizure.  

The rest of this paper is organized as follows. In 
sections II and III, the utilized method of determinism 
is first discussed and then tested on simulated time 
series. In section IV, results for healthy and epileptic 
EEG signals with one focal seizure are presented. 
Finally, in section V, the concluding remarks are 
discussed. 

II. A METHOD FOR DETECTING DETERMINISM 

FOR SHORT TIME SERIES 

In this paper, a method of determinism  [8] for short 
time series based on surrogate data testing is 
implemented. The method calculates the smoothness 
of a trajectory in state space by measuring the 
irregularity of the successive tangent vectors along the 
trajectory. The entire trajectory of the system and 
hence a long time history of the signal is not needed. 
The method can be found in  [8] and is briefly 
described as follows.   

Suppose that a time series )(nx  is samples of the 

output of a differentiable deterministic dynamical 
system. The method of time delay embedding is first 
applied in order to reconstruct the state space 
trajectory in an m-dimensional embedding space  [4]. 
The reconstructed trajectory consists of points defined 
by the following state vector  
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where T is the time lag between selected samples of 
the time series, m is embedding dimension, and tr 
denotes transpose operation.  

In the next step, the cosine function of the angles 
between successive tangent vectors  
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reconstructed trajectory is calculated and named 

as nR . It has been shown  [10] that the regularity of the 

angles may reflect smoothness of the trajectory while 
the smoothness is enough to imply determinism in the 
time series  [7]. In order to measure the regularity of 

nR , a second order difference plot (SODP) is defined 

 [8] to plot 1+∆ nR versus nR∆  where nnn RRR −=∆ +1 . 

 Furthermore, the central tendency measure 
(CTM) is defined by the following formula to indicate a 
quantitative estimate of the variability in SODP and 

hence irregularity of the nR  values. Lower values of 

CTM correspond to higher regularity in nR  which 

represents determinism.  
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where M is total number of points.  

In the last step, surrogate data testing is utilized to 
reject the null hypothesis that the time series 
represents linearly filtered random noise. Surrogate 
data are linear stochastic time series with the same 
linear and statistical parameters as the original time 
series. In this paper, amplitude adjusted Fourier 
transform method (AAFT)  [9] is used which preserve 
both the power spectrum and the probability 
distribution of the original time series.  A significance 
level (p<0.01) is selected and a statistical t-test is 
performed to reject the null hypothesis that CTM value 
of the time series and CTM values of its surrogates are 
not significantly different. Furthermore, the overall 
smoothness index (SI) is defined as the ratio of CTM 
of original time series CTMo, to average CTM of its 
surrogates. Lower values of the SI indicate that the 
CTM for original time series and its surrogate are 
significantly highly different. It has been practically 
shown  [8] that for stochastic time series SI is roughly 
greater than 0.7 and for deterministic time series SI is 
smaller than 0.3. The values of SI in between those 
levels can arise from a deterministic time series while 
further statistical tests are recommended for the 
method to be conclusive.  

The above method is suitable for testing 
determinism of short time series. However, its main 
disadvantage is its poor robustness to additive noise. 
In the presence of noise, SI index increases up to the 
point when there is no significance difference between 
CTM of time series and its surrogates. Consequently, 
a signal corrupted by noise is falsely classified as 
stochastic and the real deterministic nature of the 
signal remains concealed under its noisy appearance. 
To overcome this problem, we propose an extension 
to the method  [5], which is based on singular value 
decomposition (SVD) of the trajectory matrix of the 
time series. The trajectory matrix, X is defined as the 
matrix of all the state vectors placed in subsequent 
columns of a matrix. SVD can be written as 

tr
USVX =  where S is the diagonal matrix of singular 

values (σ ) and V is the matrix of corresponding 

singular vectors. SVD provides a linear transformation 

(
tr

U ) that transforms the trajectory into a filtered delay 

embedding space. The transformed trajectory matrix, Y 
is then calculated as in equation 3 and represents a 
reconstructed attractor in the filtered delay coordinates 
corresponding with principal components.  
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where P is total number of components.  

Application of principal component analysis (PCA) 
as a filtered time delay embedding is well known 
 [11] [6]. It is usually expected that the directions in 
transformed embedding space with small 
corresponding singular values are mainly populated by 
noise. Therefore, PCA methods usually rely on 
truncating the singular spectrum based on the relative 
magnitude of singular values. In the present study, 
however, the approach is to keep all the components 
but analyze each component for underlying 
determinism. The proposed method is as follows. For 
each component k, the trajectory matrix constructed 
using only the kth singular value is determined by the 
following equation  
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The smoothness index is then calculated for this 
trajectory and named as component smoothness index 
CSIk. In order for the contribution of each singular 
value to be taken into account, an overall 
compensated component smoothness index (CCSI) is 
defined as the weighted average of all the component 
smoothness indexes as follows.  
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where P is total number of components calculated in 
each embedding dimension. Furthermore the 
statistical significance level (the chance of the finding 

not to be true) for CCSI is named p  and defined here 

as the same weighted average of significance levels p 
obtained by statistical t-test for any CSI to suppress 
the significance level of minor components while 
calculate the average significance.  

III. SIMULATION RESULTS 

The Lorenz time series was obtained by solving 
the following dynamical equations using a step size of 
0.01.  
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The method of time delay embedding is used here 
with a time lag T=1 and repeated using different 
embedding dimensions m up to 20. The SI calculated 
for 2000 samples of the Lorentz time series without 
any noise was always significantly smaller than 0.2 
(p<10

-12
). This clearly implies deterministic nature of 

the noiseless time series as expected. For the noisy 
time series, however, SI is not robust enough and 
increases even in the presence of small additive noise. 



In order to study and compare the effect of noise on SI 
and the proposed CCSI, the above indexes are 
calculated for a Lorentz time series which are added 
with different levels of white noise. The noise level was 
defined as the ratio of the standard deviation of the 
noise to the main signal and the signal to noise ratio, 
SNR, is then expressed in dB unit. Figure 1 shows 
calculated SI and CCSI versus embedding dimension 
for a noisy time series when SNR=20 dB. SI is always 
near to 1 which does not imply determinism. However, 
CCSI can be significantly smaller than 0.3 (p<0.01) 
and detect the original determinism of the time series 
for embedding dimensions m>16.  It implies that the 
effect of added noise on CCSI can be highly reduced 
when embedding dimension is increased. Figure 2 
shows SI and CCSI calculated for different levels of 
noise and plotted versus SNR. Minimum tolerable 
SNR that keeps the index below the margin of 0.3 (and 
implies determinism) is about 46 dB for SI and 21 dB 
for CCSI. This increase in robustness is more 
significant at higher embedding dimensions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. DETERMINISM OF HEALTHY AND EPILEPTIC 

EEG SIGNALS 

The above methods of detecting determinism were 
also applied to time series of digitally recorded scalp 
EEG signals. Signals were recorded for a healthy 
volunteer in relaxed state with a sampling rate of 200 
Hz. A 10-20 standard monopolar recording montage 
with reference to average is used. Signals were band 
passed filtered between 1 and 70 Hz. 400 stationary 
segments of the signal (10 seconds each) in different 
channels were selected and tested for determinism. 

An embedding dimension m =11 and a time delay T=2 
was used.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 
As an example, SI and CCSI were calculated for 

one EEG segment recorded at channel P4 which 
mainly demonstrates normal alpha rhythm. Figure 3 
shows calculated SI and CCSI plotted versus m.  It is 
clear that smoothness index (SI) is always near 1 that 
concludes no determinism in this segment of EEG 
signal. CCSI however, drops to lower values of below 
0.4 for large enough embedding dimensions (m>10). 
Significant level of all calculations is verified by 
surrogate data tests with p<0.02. Similar results were 
obtained for all the other selected segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

EEG signals are also recorded before a focal 
seizure occurs for an epileptic patient. The same 
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    Figure 3: SI and CCSI versus m for one EEG segment 
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              Figure 1: SI and CCSI at different embedding  
             dimensions for noisy Lorenz time series SNR=20 dB 

 

 

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

SI and CCSI versus SNR - m=14  Noisetype=normal

S
I/

C
C

S
I

Signal to Noise Ratio (SNR dB)

 

 

SI versus SNR level

CCSI versus SNR level

     Figure 2: SI and CCSI versus noise level when normal 
white noise is added to Lorentz time series 

 



method of recording described in the previous section 
was used. Signals were divided into subsequent 
segments of 10 seconds each and CCSI was 
calculated for each segment. An embedding 
dimension of m=11 and a time delay of T=2 was used. 
The time series of CCSI was then low pass filtered 
using a moving average filter with the frame size of 60 
seconds. Variation of filtered CCSI for each channel is 
plotted versus time in Figure 4 for all channels. The 
time onset of the epileptic seizure is also marked on 
the figure. The only consistent and significant variation 
of CCSI which is observed prior to seizure is a shown 
to be a sharp increase and decrease in CCSI 8 and 4 
minutes before the onset respectively. Variation of the 
CCSI after the seizure is not validated because of the 
large movement artifacts of the patient during the 
seizure activity. Although the significant variation of 
CCSI before the seizure can be associated to the 
impending seizure, more study is needed to verify the 
above results on different seizures and describe the 
reason behind these variations. Moreover, the 
sensitivity and false positive errors of any prediction 
should be investigated.  

V. SUMMARY AND CONCLUSION 

Prediction of epileptic seizures is very challenging 
for scalp EEG. The proposed method in this paper 
provides a robust method of testing determinism in 
time series using component analysis of the signal 
followed by analysis of smoothness. The method was 
used to detect changes in brain dynamics which may 
have useful information for seizure prediction. A 
significant change in determinism was detected on a 
seizure around 8 min in advance. The method should 
be tested on a large data set to validate the relation 
between seizure and observed changes. 
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Figure 4: Filtered CCSI signal calculated for different channels and plotted versus time 


