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INTRODUCTION 

Brain-computer interfaces (BCI) use brain 
signals to control electronic devices.  These 
devices promise to assist individuals with severe 
mobility impairments such as advanced stages of 
amyotrophic lateral sclerosis (ALS), brain stem 
stroke, spinal cord injury, and severe cerebral 
palsy [1]. 

Recently, BCI technology has been used as an 
assistive device to restore movement.  This is 
accomplished by controlling an orthotic, 
prosthetic or neuroprosthetic device through the 
BCI.  For a transparent and intuitive operation of 
these devices through a BCI, it would be ideal to 
use neural activity which is correlated with the 
desired output to command the device and that 
does not require user training.  For example, if a 
user wanted to open a prosthetic hand, the BCI 
would identify changes in brain activity resulting 
from the desire to perform this action and 
generate the appropriate movement.  This type of 
correlation between neural signals and behaviour 
has been found when a person is engaged in 
voluntary movement (performed, imagined, or 
during preparation to perform a movement). 

One of the strategies that researchers have 
applied to use a BCI system to restore movement 
has focused on the identification of specific 
movements.  This has included the detection of 
imagined and performed movements as well as 
the intention to perform these movements using 
both EEG and ECoG signals. By using ECoG 
recordings, it has been possible to identify 
extension of the middle finger, palmar pinch, 
tongue protrusion and lip protrusion [2, 3], wrist 
extension, target tracking, finger sequencing and 

threading [4, 5] movements, hand and face 
movements as well as verbalization [6, 7]. 

The purpose of this study was to explore the 
possibility of identifying specific movements 
performed by an individual from ECoG 
recordings obtained with subdural electrodes with 
four contacts.  The movements were performed 
using the same upper limb and likely involved 
areas of the body with close or similar 
representations in the motor cortex. A feature 
extraction algorithm was developed that was able 
to determine which arm movement was performed 
based on the ECoG recordings.  These recordings 
were performed using standard subdural four-
contact electrodes placed over the primary motor 
cortex. 

MATERIALS AND METHODS 

Participants 

Two individuals participated in this study.  
Subject 1 was a 73 year old male individual with 
Parkinson’s Disease, and subject 2 was a 65 year 
old female individual with Essential Tremor. Both 
participants were recruited from the Movement 
Disorder Clinic of the Toronto Western Hospital 
and gave written informed consent to participate 
in the study, which was approved by the 
University Health Network Research Ethics 
Board. 

Both participants received a system for direct 
brain stimulation for the treatment of tremor.  This 
procedure began with the implantation of subdural 
electrodes (figure 1) followed by a period of 
several days in which the electrode leads were 
externalized and the characteristics of the 
electrical stimulation (i.e., amplitude, polarity, 
etc.) were fine tuned.  This was followed by 



implantation of the pulse generator and permanent 
internalisation of the entire stimulation system.  
The study presented in this article was conducted 
during the time period when the electrode leads 
were externalized and at least two days after the 
electrodes were implanted. 

The subdural electrodes were implanted over 
MI area associated with the upper extremity 
representation.  This was confirmed by applying 
electrical stimulation (100 Hz, 100 µs, monopolar, 
3-10 mA) and observing contractions of the 
muscles on the contralateral upper limb.  Direct 
stimulation of the motor cortex elicited 
movements consistent with elbow flexion and 
closing the hand for subjects 1 and 2, respectively.  
For both participants, the electrodes were 
implanted for clinical and investigational reasons 
independent of the study presented here. 

Experimental Protocol 

The participants of this study performed upper 
limb movements with the arm contralateral to the 
site of electrode implantation.  Subject 1 
performed elbow flexion (EF) and reaching to 
targets positioned 30 cm to the right and left of 
the subject’s midline (RTR and RTL, 
respectively).  Subject 2 performed the reaching 
tasks as well as closing the hand (CH).  The 
movements were performed following an auditory 
cue (“Go”). 

The limb kinematics and monopolar ECoG 
signals were recorded simultaneously while each 
individual performed the movements.  Each 
movement was repeated 30 times. 

Feature Extraction 

Labeling the subdural electrode contacts 
ECoG1, ECoG2. ECoG3, and ECoG4, the ECoG 
monopolar signals were subtracted between 
adjacent (e.g. ECoG2- ECoG2) and non adjacent 
(e.g. ECoG3- ECoG2) contacts. 

The time-frequency distribution was estimated 
for all ECoG signals (monopolar and differential).  
To do this, each signal was divided into segments 

of 640 msec (128 samples) by applying a 
Hamming window. 

 

Figure.1.  X-ray image showing the implanted 
subdural electrodes for subject 2.  The electrodes 
used (‘Resume’, Medtronic 3586, Minneapolis, 
MN) consisted of four platinum contacts of 4mm 
in diameter and a centre to centre distance of 
10mm, arranged in a single row. 

 

A Fourier transform was then computed for the 
windowed ECoG signal resulting in a spectrum 
with a resolution of 1.56 Hz.  Then the window 
was shifted to the right by one sample and the 
procedure was repeated until the end of the ECoG 
signal was reached.  Once this process was 
completed, a Pearson correlation coefficient was 
calculated between each one of the time-resolved 
spectral components of the resulting spectrogram 
and each one of the position kinematic signals (X, 
Y, and Z).  Correlation coefficients with an 
absolute value grater than 0.1 were considered 
significant (p<0.01; degrees of freedom of 
statistics were 600).  For each of the kinematic 
components, we identified the 20 frequency 
components with the highest absolute correlation 
coefficients.  These frequencies were grouped 
using a histogram with bins representing 
bandwidths of 10 Hz.  A different histogram was 
created for each one of the three kinematic 
coordinates of the executed movement. 



The magnitude of each bin in the histogram 
indicated the probability that the frequency it 
represented was correlated with the movement 
performed by the subject at the time of the 
recordings. The probability estimate was defined 
as the number of spectral components within a 
frequency bin found to be correlated with 
movement divided by the number of frequency 
components included in the entire histogram (i.e. 
20).  Figure 2 shows an example of the end result 
of this process. 

Classification Tests 

To determine off-line the movement (i.e. EF, 
CH, RTR, RTL) performed by the individual by 
observing the ECoG features of a single trial 
using the process described above we used a 
nearest neighbour classifier (NCC).  The 
magnitude of each column in the histograms was 
defined as a feature for the NNC; for any given 
motor task, all of the features for each kinematic 
signal (X, Y, and Z) were concatenated to form a 
single feature vector. 

The classifier was trained using 5 trials, 20 
spectral components (sorted in descending order 
according to their absolute value as describe 
previously).  We investigated the effect of the 
type of ECoG signals used by the classifier (i.e., 
monopolar, differential adjacent, or differential 
nonadjacent signals) on the classification 
accuracy. 

RESULTS 

Each one of the movements generated a 
unique histogram for each of the kinematic 
dimensions, as shown in figure 3.  The histograms 
were also subject specific.  The correlation 
coefficients between the kinematic recordings and 
ECoG spectral components used were in the range 
of 0.15 ± 0.006 to 0.63 ± 0.01 (mean ± SD). 

The classifier was able to identify the 
movements performed by each subject with an 
accuracy of 89%.  The accuracies achieved using 
differential adjacent and differential nonadjacent 
signals were significantly greater than those 

achieved using monopolar signals (p<0.05; 
Wilcoxon ranksum test).  The best accuracies 
were obtained using non adjacent differential 

signals. 

 

 
Figure 2.  Distribution of ECoG frequency 

components correlated with the X-coordinate 
while subject 1 was performing elbow flexion 
(EF).  Example of the histogram representing 
how often spectral components of the ECoG 
signals within the different frequency bins were 
found to be correlated with the X-coordinate 
while subject was performing EF. 

Figure. 3. Histograms obtained using 
frequency bins of 10 Hz for Subject 1.  Each one 
of the movements generated a different 
histogram for each one of the coordinates. 



CONCLUSSIONS 

A novel method for the identification of 
specific motor tasks from ECoG signals was 
presented.  The process described here simple; it 
is based on creating histograms representing the 
probability of correlation between spectral 
components of ECoG signals within predefined 
frequency bands and kinematic components of 
movement.  Details of this work can be found in 
[8].  The distribution of the spectral components 
was found to be unique for the different motor 
tasks.  This allowed the use of the histograms as 
features to classify ECoG signals according to the 
specific movement that an individual had 
performed.  The distributions of ECoG spectral 
components correlated with movement were 
different for the two participants in this study.  
This finding suggests that the ECoG features that 
can be used for the identification of specific motor 
tasks are subject specific. 

The current implementation of this system 
requires that the user performs the kinematic task 
to perform the classification Our immediate future 
work will be focused on developing a classifier 
that will be able to perform the classification 
while the motor task is being executed..  Our 
long-term goal is to apply this classification 
method to imagined movements. 
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