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ABSTRACT 

The integration of multiple control strategies into a 
hybrid system could allow a prosthesis user to perform 
smoother, multi-joint reaching movements while 
reducing the necessary mental effort. This work 
illustrates the usefulness of the shoulder myoelectric 
signal as an input source to a control strategy by 
extracting time domain features from these signals and 
using a linear discriminant analysis classifier to 
recognize the user’s intended motion.  This work is an 
important first step for future development of hybrid 
systems that will enable simultaneous control of 
multiple degrees of freedom used for reaching tasks in 
a prosthetic limb. 

INTRODUCTION 

The development of control systems for prosthetic 
devices has often relied on the use of residual limb 
motion to allow the user to control several degrees of 
freedom (DOF).  The most common approach is the 
use of cables, which has been in use for several 
decades.  Externally powered systems also exist 
where sensors such as force-sensitive resistors and 
rocker switches are used as primary or additional 
inputs.  This approach is by no means ideal as it may 
often require considerable training in order to achieve 
an acceptable level of control of the required DOF.  
Amputees often still favor the cable-operated system 
since it offers simpler operation of the prosthetic 
devices, and also provides some level of 
proprioceptive feedback to the operator. Other 
approaches, particularly myoelectric signal (MES) 
based controllers, have not yet offered a viable and 
effective alternative. 
 

The conventional approach to myoelectric control 
(also termed “direct control”) uses amplitude coding of 
the MES from either one or two control sites to actuate 
the prosthetic device [1,2].  Such a strategy provides a 
means of controlling the desired DOF in a manner 
proportional to the desired velocity.  Traditional and 
commercially available control systems are typically a 
variation of this control scheme while more advanced 

strategies have yet to be fully implemented in a clinical 
setting. 

 
Currently, it is nearly impossible to reliably control 

a large number of DOF simultaneously in an intuitive 
manner using an amplitude based control system.  For 
high-level amputees, the required number of control 
inputs far exceeds the number of available voluntarily 
controlled MES sites.  As a result, attempts to directly 
control multiple DOF simultaneously increases the 
mental burden placed on the user.  Moreover, complex 
synergistic muscle groups actuate some DOF in an 
manner that does not allow effective one-to-one 
mapping.  The shoulder joint is a prime example of 
such a situation, which provides further motivation for 
the use of residual limb motion as a control source for 
prosthetic control systems. 
 

Other sophisticated myoelectric control schemes 
consist of pattern classifiers to recognize the 
contraction patterns within the MES [3].  To 
accomplish this, MES patterns are acquired from a 
user, features are extracted, and used to train a 
classifier.  Many variations of this control scheme, 
including a variety of feature sets and classifiers, have 
been investigated [3].   
 

The MES originating from the shoulder complex 
has so far been a less effective primary input source 
for prosthetic control.  This work demonstrates how 
synergistic muscle contractions from the shoulder 
complex, in combination with advanced myoelectric 
control schemes, can be exploited and used to 
develop a pattern recognition based myoelectric 
controller.  

METHODOLOGY 

Experimental Protocol 
MES data corresponding to eleven classes of motion 
were collected from five healthy subjects. Eight Ag-
AgCl Duotrode electrodes (Myotronics, 6140) were 
placed at physiologically relevant locations for 
shoulder girdle motions (Figure 1).   



The UNB Research Ethics Board approved the 
experimental procedure used for this research and 
each subject provided informed consent prior to 
participating in the experiment. 
 

Subjects were instructed to complete nine 
combinations of shoulder girdle motions: elevation, 
elevation/protraction, protraction, depression/ 
protraction, depression, depression/retraction, 
retraction, elevation/retraction and a no movement/rest 
class.  In addition, subjects were asked to perform two 
isometric contractions: medial and lateral rotation of 
the humerus. Each motion or contraction was held for 
four seconds and the entire set was repeated six 
times. The first three repetitions were used as training 
data, and the remaining data were used for testing.  
The data were amplified using a gain of 20, low pass 
filtered at 500 Hz, and acquired at 1 kHz using a 16-bit 
analog-to-digital converter. 
 
Data Processing 

A feature set consisting of time domain (TD) 
statistics, used previously in real time MES control 
schemes [3,4,5] was used to process the data.  
Included in the TD set are: the number of zero 
crossings, the waveform length, the number of slope 
sign changes and the mean absolute value for a given 
data window.  The data from each channel was 
segmented into window frames of 250ms from which 
these features were computed.  The features from 
each channel were then concatenated into an 

aggregate feature vector and used as inputs to a linear 
discriminant analysis classifier. Other feature sets 
were investigated, but these were shown not to 
provide any significant improvement in performance. 

 
Two separate classifiers were created using the 

feature sets.  The first consisted of only seven motion 
classes: elevation, depression, protraction, retraction, 
medial and lateral humeral rotation, and no movement.  
The second classifier included the additional four 
motion classes that were considered to be 
combinations of the elevation/depression and 
protraction/retraction motion classes.  The seven-
motion class problem incorporates movements used 
during shoulder displacement, which elicit the muscle 
synergies in a more fundamental manner as compared 
to the eleven-motion class problem.  Additionally, 
using a seven-motion classifier would only allow 
movements to be executed using sequential activation 
of the DOF in question while the eleven-motion 
classifier would enable simultaneous multi-DOF 
control due to the combined nature of the four 
additional classes. 

 
The optimal number of channels used to extract 

the features, train and test the classifiers was also 
investigated.  Classifiers based on all possible channel 
combinations were trained and evaluated. The 
classifiers were then ranked, on a subject-by-subject 
basis in terms of their classification accuracy. The 
process was repeated for i channel data sets (where 
i=1:8).  The classification accuracy of the optimal 
channel combination for each i channel data sets was 
recorded on a subject-wise basis.  The optimal group-
wise results were also calculated using a cost metric 
based on the ranking of the channel combinations for 
each subject. 

RESULTS 

The confusion matrix, shown in Figure 2, presents 
the eight-channel classification performance, averaged 
across all subjects, using the TD feature set for the 
seven motions case.  Presenting the results in this 
format illustrates the classifier’s ability to accurately 
identify each of the desired motions.  The classifier’s 
overall accuracy was found to be 93.6%.  Figure 3 
shows the eight-channel classification performance, 
averaged across all subjects, using the TD feature set 
for the eleven motions case.  A drop in classification 
accuracy was observed for all corresponding classes 
when compared to the seven motions case.  The 
overall classification accuracy was found to be 88.5%.  
Another classification measure, termed adjacent 
classification, was also used to underscore the 
misclassifications, which were one of the discrete 

 
Figure 1: The electrode placement locations 
used during the experiment: 

1. Upper trapezius/Supraspinatus area 
2. Middle trapezius/Rhomboid area 
3. Lower trapezius 
4. Latissimus dorsi 
5. Infraspinatus/Teres area 
6. Medial deltoid area 
7. Serratus anterior 
8. Pectoralis major area 



motions used in the combined motion classes.  Its 
value was found to be 3.6% thus labeling 7.9% of the 
classifications as incorrect.   

 
Figures 4 and 5 display the overall classification 

accuracy (averaged across all subjects) for both the 
optimal subject-wise and group-wise channel 
combinations for the seven and eleven class cases, 
respectively.  In both cases, the highest accuracy 
achieved, using the group wise channel combinations, 
occurred when all eight MES channels were included. 

DISCUSSION 

The performance results of the classifiers seem to 
indicate that the protraction and depression motions as 
well as the retraction and elevation motions pair are 
major contributors to classification error.  This may be 
explained by the highly correlated actuation of 
synergistic shoulder muscles used for these 
movements.  Re-assessing the optimal electrode 
placement may alleviate this problem by attempting to 
find highly uncorrelated MES locations, which would 
increase the separability of the classes in question. 

An attempt to reduce the number of channels 
resulted in a decrease in classification accuracy.  It 
should be mentioned however, that increasing the 
number of channels beyond five produced only minor 
improvements to the classifier performance.  
Additionally, the differences shown on both plots 
between the group-wise and subject-wise results 

 
Figure 4: Classification performance for seven-

class case. 

 
Figure 5: Classification performance for eleven-

class case. 

 
Figure 2: A classification confusion matrix, averaged across all subjects, for seven discrete motions 
using the TD feature set.  The shaded areas represent accurate motion classification while the 
remainder of the respective column represents incorrect classification for the given motion. 

 
Figure 3: A classification confusion matrix for eleven motions using the TD feature set, averaged 
across all subjects.  The dark shaded areas represent accurate motion classification while the results 
found within the lightly shaded areas represent adjacent misclassification during combined motion 
performance.  The remainder of the respective column represents incorrect classification for the given 
motion. 



indicate that the ideal channel subset varied between 
subjects. 

 

 These classification results, although promising, 
are not indicative of actual prosthetic usability when 
combined with various control strategies (e.g. 
endpoint, joint position/velocity, torque-based control 
schemes).  Previous research has shown that usability 
may vary significantly when compared to classifier 
performance [6].  The development of appropriate 
qualitative and quantitative clinical tests is required to 
further investigate the efficacy of these control 
schemes. 

CONCLUSION 

A pattern classification scheme was implemented 
using the MES generated during residual shoulder 
girdle movements.  The effects of various features sets 
as well as reduced channel combination subsets were 
also investigated.  Minimal classification performance 
variance was observed when using different feature 
sets. The accuracy was found to be 93.6% and 88.5% 
when classifying seven and eleven classes, 
respectively.  Reducing the number of channels used 
to extract the features decreased the classifiers’ 
performance, although five appropriately chosen 
channels provided near-optimal performance. 

Further research is required to evaluate the 
usability of these MES based classifiers in controlling 
multiple DOF of a prosthetic limb.  Ultimately, the 
usefulness of these schemes must be assessed on its 
ability to intuitively and reliably enhance the prosthetic 
user’s ability to perform tasks of active daily living.  
Work is currently ongoing to develop functional tests to 
achieve those goals. 
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