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1. INTRODUCTION 

A spectrogram is a display of the frequency 
content of a signal drawn so that the energy content in 
each frequency region and time is displayed on a 
coloured scale. In the case of speech signal, the 
spectrogram has been widely used to investigate the 
features of speech in the time-frequency plane that are 
perceptually important. For instance, more than fifty 
years ago, the spectrogram was already being used to 
determine the average frequencies of the first three 
formants of the vowels of American English for men, 
women and children [1]. The spectrogram is also 
widely used in speech analysis for developing speech 
recognition systems [2]. 

The spectrogram today can be generated digitally 
using the Short Time Fourier Transform (STFT). 
However, spectrograms implemented using STFT 
suffer from the unavoidable tradeoff between time and 
frequency resolution, also known as the uncertainty 
principle of signal analysis [3]. The emerging 
recognition of the existence of frequency and 
amplitude modulations in speech on the order of a 
pitch cycle, which is referred to as “fine structure”, has 
motivated many researchers to develop new 
spectrogram representations to obtain better time-
frequency resolution. A filter-bank method called fine 
structure spectrogram (FSS) introduced in [4] is shown 
to be able to detect the fine structure in the modulation 
patterns of speech, not seen by other methods before. 

Although FSS is successful in utilizing some of the 
functional components of a real auditory system, there 
are other properties, which have not yet been 
implemented in its approach. In this paper, the fine 
structure spectrogram is first presented, modifications 
to build a more biological FSS are then introduced, 
and finally the results from both original and modified 
versions of FSS are compared to each other and in 
relation to the real output as processed by an actual 
auditory modeling system.    
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2. FINE STRUCTURE SPECTROGRAM  

Structure 

The fine structure spectrogram (FSS) is an 
enhanced realization of the conventional spectrogram 
model. Instead of representing the local spectral 
content of a signal, it tracks the instantaneous 
frequency of a modulated component of speech using 
a filter-bank. It can be constructed using numerous 
overlapping filter/detectors. Each filter/detector 
consists of a bandpass filter, followed by a rectifier and 
smoother with a detector of local peaks in the outputs 
of all the filter/detectors. All peaks at one time instant 
can be utilized to produce the instantaneous frequency 
spectrum and then be used to produce FSS over the 
time duration of the speech signal.  

Filter/Detectors  

Inspired by the thousands of tuning characteristics 
of the afferent auditory fibers, thousands of 
filter/detectors (F/D’s) are used to break the signal into 
frequency components, and then pick the local peaks 
to detect the instantaneous frequency at each time 
instant. There are four stages in each F/D: filtering, 
rectifying, smoothing, and local peak picking of all 
F/D’s at the end, as shown in Fig. 1(a). The speech 
signal at one time instant is first decomposed into its 
different frequency components through a bandpass 
filterbank.  

The filterbank is shown in Fig. 1(b). It consists of 
thousands of overlapping wide-band bandpass filters 
spaced equally apart in frequency with a constant 
bandwidth. Each frequency component obtained 
through the filters is then passed through a rectifier to 
extract its relative energy content. The resulted signals 
(an example is shown in Fig. 1c) are smoothed out 
before being sent to the last stage, the peak detector, 
which picks out local energy peaks to track the 
instantaneous frequency spectrum of the speech 
signal.  

 
 
 



 
 

Fig. 1.   (a) Basic structure used to generate the fine 
structure spectrogram (FSS). Hundreds or thousands 
of F/D’s are used. (b) The magnitudes of the filter 
transfer functions in one implementation where the 
center frequencies were separated by 5 Hz. (c) A plot 
of the rectified and smoothed filter outputs, at a given 
instant in time. The analyzed signal was the syllable 
/ba/. Adapted from [4]. 

Spectrogram Implementation 

A spectrogram can be implemented from the 
displaying of instantaneous frequency spectrum 
throughout the duration of the signal, with the energy 
content scaled by intensity. FSS detects the fine 
structure of the modulated patterns in speech signal. It 
is also able to detect significant time-frequency 
modulations not seen with other methods before. 
Following the literature in [4], the model was 
reconstructed and coded in MATLAB. The attempt in 
modifying this model is described in the following 
section. 

 
 
 
 

3. BIOLOGICALLY INSPIRED MODIFICATIONS 

Overview 

Although FSS shows success in utilizing some 
properties of the auditory system, it also differs from 
known properties of a real auditory system in two 
major ways: (1) bandpass filters have constant 
bandwidths, and are (2) spaced equally across the 
frequency range. This is in contrast to the work of 
gammatone filterbanks by Patterson et al. [5] as 
applied in [6][7].  A Gammatone filterbank is a 
standard model of cochlear filtering [8]. It provides 
non-uniform bandwidths and non-uniform spacing of 
the center frequencies following the characteristics of 
the auditory system. Our attempt to give FSS a more 
biological design follows a similar approach.  

Filters Spacing 

In the FSS model, filter spacing is kept uniform 
across all frequencies, while the nature of auditory 
system suggests otherwise. Non-uniform spacing is 
observed in turning curve characteristics as shown in 
[10]. In fact, the turning curves are distributed quasi-
logarithmically across frequency. In correspondence, 
the spacing of bandpass filters should be distributed 
quasi-logarithmically across frequency. Here, an 
approximated logarithmically spaced model extracted 
from  [11] is used to observe the effect on FSS with 
minimal invasiveness. The center frequency Fc of each 
bandpass filter is determined as:  

4.144029.15.237)( −⋅= n
c nF  

n represents the nth filter of the filterbank 
distributed from 100Hz to 4000 Hz. 

Filter Bandwidths 

We also note that the bandwidths of the filters are 
not uniform in the auditory system. The turning curves 
along the basilar membrane, which corresponds to the 
bandpass filters in the filterbanks, actually behaves 
such that the bandwidths increase with frequency [9]. 
In another sense, the auditory system loses frequency 
resolution towards higher frequencies, but gains time 
resolution in return. A similar approach to the 
Equivalent Rectangular Bandwidth (ERB) given in [5] 
is adopted here, given the bandwidth B(f) in Hz: 

7.24)( +⋅= fafB  

a is 0.1039 in [5], it is doubled to 0.2078 here to 
provide a more apparent effect on FSS that is 
relatively easy to observe.  

  



COMPARISON AND DISCUSSION 

Overview 

To observe the effect upon the modifications in the 
filterbank, various versions of the spectrogram were 
generated with a test signal for one time frame (one 
time instant). 0th order and 1st order time-frequency 
relations are sufficient as an approximation to provide 
a general consensus on the modification effects. 
Therefore, the testing signal used is the sum of single 
tone sinusoid (0th order) and a chirp tone (1st order). 
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While speech, a significantly more complex signal, can 
be seen in part as a combination of 0th order (vowels) 
and 1st order (glides) tones. 

In our implemented version, FSS is simplified with 
non-overlapping windows, and the number of filters is 
reduced to 100. The change introduces negligible 
differences at our level of comparison.  

Original FSS 

The oversimplified FSS provides reasonably 
accurate and precise information on the test signal as 
shown in Fig. 2(a).  A smearing, however, does occur 
at the crossing of the chirp and the single tone. The 
smearing is caused by the interference between the 
adjacent overlapping bandpass filters close to the 
cross point frequency and is commonly found even 
with other standard techniques. The intensity of the 
smearing can however be significantly reduced with 
multiple time frames, although this is not a matter that 
concerns this paper.  

Non-uniform filter spacing 

When the filters are distributed logarithmically but 
the bandwidths are set to be uniform across 
frequency, the resulted spectrogram on the testing 
signal is shown in Fig. 2(b). As the separation of filters 
increases with frequency, a “staircase” figure is formed 
due to quatization of the filters in the frequency space. 
The “staircase” observation agrees with the frequency 
discriminations behavior in the auditory system. In 
[12], it stated that the value of threshold in frequency 
difference required to discriminate a change in 
frequency increases as frequency increases.  
Moreover, the variation of the widths of the adjacent 
stairs can give clues to the auditory perceiver as to the 
slope of the rising chirp.  

Non-uniform filter bandwidths 

While a “staircase” can be seen in the neural 
response of the auditory system, one does not hear 
such “staircase” in real life. The reason lies in the non-
uniformity of the bandwidths. The filters are more 
separated as frequency increase, at the same time the 
bandwidth of the filter increases. The effects of 
increasing bandwidth can be seen in Fig. 2(c).  The 
increased bandwidth at high frequencies has the effect 
of improving temporal resolution. The decrease in 
spectral resolution behaves in essence as a frequency 
smoother. 

Non-uniform filter spacing and bandwidths 

The modified FSS with both non-uniform spacing 
and bandwidths is shown in Fig. 2(d). As frequency 
increases, the spectral resolution is sacrificed in 
gaining temporal resolution. This induces a smearing 
in frequency, which acts as a smoother to reduce the 
“staircase” effect. Due to the picking of local energy 
peaks, this smoothing is not as apparent, but a 
smearing range, which widens with increase in 
frequency can be observed.  
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Fig. 2. Outputs of the original FSS and modified FSSl. 
(a) Original FSS output. (b) Non-uniform spacing (c) 
Non-uniform bandwidths (d) Non-uniform spacing and 
bandwidths. 



 

Development System for Auditory Modeling (DSAM) 

We are also in a position to compare the output of 
the modified FSS with the output of a real auditory 
system.  We use the well-known Development System 
for Auditory Modeling (DSAM) [13]. The Development 
System for Auditory Modeling (DSAM) is a 
computational library designed specifically for 
producing simulations of the auditory system. It brings 
together many established auditory models, produced 
by various research groups, under a flexible 
programming platform. The particular application of 
interest is the Auditory Modeling System (AMS), which 
produces responses at different levels of the biological 
auditory system.  

Since the single tone sinusoid provides limited 
information in the difference between the original and 
modified FSS, it is removed from the testing case. We 
use only the chirp portion of the test signal: 
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Showing in Fig. 3(a) is the output from the 
modified FSS, with non-uniformity for both bandwidths 
and spacing. As a comparison, the envelope of the 
spike count in the auditory nerve fiber response of 
AMS is extracted and shown in Fig. 3(b). “Staircase” 
and smoothing effects can be observed in both figures 
with a little discrepancy due to the peak picking of local 
energy contents for the modified FSS. The two figures 
are plotted again in terms of the filters in Fig. 3(c)(d). 
Since the filter spacing is non-uniform, the resulted 
outputs appear in logarithmic fashion instead of as a 

straight line, but the great similarity between the two 
plots can still be easily observed.  

CONCLUSION  

Although modified FSS creates more complexity in 
comparison with the original, it is more biological 
plausible and opens up new ways to study signal 
spectrography in a manner previously not possible.  
The human ear is a remarkably versatile and sensitive 
spectrum analyzer and hence new signal processing 
techniques may benefit from further study of biology. 
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