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ABSTRACT 
 

Information extracted from signals recorded from 
multi-channel surface myoelectric signal (MES) 
recording sites can be used as inputs to control 
systems for powered prostheses.  For small, closely 
spaced muscles, such as the muscles in the forearm, 
the detected MES often contains contributions from 
more than one muscle; the contribution from each 
specific muscle being modified by a tissue filter 
between the muscle and the detection points.  In some 
cases the contributions from very small/deep muscles 
are masked by those from larger/superficial muscles.  
In such circumstances, subtle changes in muscle 
activations associated with different movements may 
not be easily detectable.  In this work, the measured 
raw MES signals are rotated by class specific rotation 
matrices to spatially decorrelate the measured data 
prior to feature extraction.  This tunes the pattern 
recognition classifier to better discriminate the test 
motions.  Preliminary work indicates that this additional 
preprocessing step significantly reduces classification 
errors. 
 

INTRODUCTION 
 

The myoelectric signal (MES) has been 
effectively used as a control input to powered 
prosthesis for over 40 years [1].  The ultimate goal in 
limb replacement, from a control perspective, is to 
provide the user with a device that is intuitive to control 
and is capable of independent, simultaneous activation 
of multiple degrees of freedom.  This is a very 
challenging problem.  The simplest form of control can 
be realized by mapping an estimate of the amplitude 
[2], or rate of change of the amplitude [3] of a given 
MES site to one degree of actuation of the prosthetic 
device.  These systems work well and are intuitive to 
use provided a portion of a physiologically appropriate 
muscle remains on the residual limb from which the 
MES can be measured.  Generally, this type of control 
system is capable of controlling only one or two 
degrees of freedom due to a limited number of 
independent control sites remaining on the residual 
limb.  Information extracted from patterns contained in 

the myoelectric signal can also be used for control 
purposes.  A robust state-of-the-art continuous pattern 
recognition based myoelectric control system capable 
of providing real-time sequential multifunction control 
was described in [4].  Briefly, this control system 
consists of signal detection, feature extraction, 
dimensionality reduction, classification, and post-
processing in the form of majority voting.  A variety of 
feature extraction, dimensionality reduction, and 
classification techniques have been investigated and 
reported in the literature.   
 

The surface MES is an electrophysiological signal 
generated by a muscular contraction which propagates 
along the length of skeletal muscle to detection points 
on the skin’s surface.  For small, closely spaced 
muscles like those in the forearm, the detected MES 
often contains contributions from more than one 
muscle; the contribution from each specific muscle 
being modified by a tissue filter between the muscle 
and the detection points.  In some cases the 
contributions from very small/deep muscles are 
masked by those from larger/superficial muscles and it 
is possible for these subtle changes in muscle 
activation, associated with varying movements, to go 
undetected.  Because pattern recognition based 
myoelectric control systems rely on repeatable, distinct 
patterns being identified in the MES at the electrode 
locations, it is desirable to distinguish even the most 
subtle changes.  This work introduces an additional 
pre-processing step to a pattern recognition based 
myoelectric controller which acts as a “tuner” for each 
specific class in order to extract the most pertinent 
information and reduce classification errors.    
 

METHODOLOGY 
 
Experimental Protocol 

MES data corresponding to twelve classes of 
motion were collected from 4 healthy subjects using an 
assistive brace developed by Hargrove et al [5] for 
performing static contractions.  All experiments were 
approved by the University of New Brunswick’s 
Research Ethics Board.  Five or six electrodes were 



placed around the forearm, depending on size; chosen 
to optimally encompass the circumference of the arm.   
 

Subjects were prompted to perform eight 
repetitions of the following 11 types of contraction: 
wrist pronation/supination, wrist flexion/ extension, 
wrist abduction/adduction, hand open, key grip, chuck 
grip, power grip, pinch grip and a no movement/rest 
class.  Each contraction was held for 4 seconds. The 
first four repetitions were used as training data, and 
the final four for testing.  Data were collected using a 
custom built pre-amplification system, a 16-bit DAQ 
and custom data acquisition software, sampling at 
1kHz. 
 
Data Processing 

The pattern recognition control system described 
in [4] with the additional data pre-processing block is 
shown in Figure 1a.  The focus of this paper is on the 
improvement gained by the addition of the pre-
processing block and the reader is referred to [4] for a 
thorough description of the remainder of the system. 
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Figure 1: The basic steps of pattern recognition based 

myoelectric control. 

 

Previous work for similar data sets has shown that 
(TD), auto-regressive coefficient (AR), or concatenated 
TD and AR (TDAR) features all yield good 
classification performances as inputs to a linear 
discriminant analysis (LDA) classifier for the motions 
under investigation [5].  Consequently, these feature 
sets and classifier will be used to assess the relative 
performance effect of the pre-processing block.  
Features were extracted from 250ms data windows 
and no dimensionality reduction or majority voting was 
used.       
 

Principal Components Analysis (PCA) is a linear 
transformation which linearly decorrelates multivariate 
data and projects it onto a new coordinate system 
such that the greatest variance in the data lies on the 
first coordinate while the least variance in the data 
comes to lie on the last coordinate [6].  The PCA 

transformation matrix will be different for each motion 
class if; 1) different degrees of muscle crosstalk are 
present at the electrodes for different motions, or 2) 
the signals detected at the electrodes are uncorrelated 
but are of different relative amplitudes.  The first point 
is a result of the decorrelation property of PCA while 
the second point stems from the ordering of the 
principal components (PCs) from maximum to 
minimum variance.  The PCA tuning algorithm projects 
data down class specific PCA transformation matrices 
(which are found using the training data for each 
specific class) and then extracts features from the 
rotated data as shown in Figure 2.   
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Figure 2:  A block diagram showing the PCA tuning 

preprocessing block.  This form of signal processing 

increases the dimensionality of the input by a factor of C 

where C is the total number of motion classes.  

 

It is hypothesized that the projection down the 
appropriate PC transformation matrix will enhance or 
‘tune’ the data while projection down the remaining PC 
transformation matrices will result in less meaningful 
linear combinations of the measured multivariate data.  
A similar algorithm has been successfully implemented 
to improve recognition of facial patterns in the context 
of image processing [7]. 
 

It can be seen in Figure 2 that the PC tuning 
algorithm increases the dimensionality of the inputs by 
a factor of C where C is the total number of classes.  
This could be problematic due to the ‘curse of 
dimensionality’ [8]; high dimensional space requires 
much more training data than low dimensional space 
to ensure that dense decision boundaries are formed.  
Consequently, either much more training data must be 
collected or feature reduction techniques need to be 
employed. It is desirable to use feature reduction 
techniques for two reasons; 1) shorter training 
sessions are more convenient for a prosthetic user 
and 2) less features improve the real-time 
performance of the classifier.   



 
A simple channel growing algorithm was used to 

reduce the dimensionality of the data.  This algorithm 
iteratively adds the most informative linearly combined 
channels, as determined by empirical classification 
performance.  In the first iteration of this method, each 
channel was used, independently, to train and 
subsequently test classification performance. The 
channel producing the highest classification accuracy 
was chosen as the first channel of the reduced subset. 
For the next iteration, the first optimal channel was 
paired with each of the remaining channels to form a 
2-channel EMG data set for classification. The pair of 
EMG channels generating the highest classification 
accuracy was considered the best two-channel subset. 
This procedure was repeated until the classification 
performance reached a plateau or began to decrease 
as a result of the increased dimensionality of the data.     
 

RESULTS 
 

Figure 3 provides a comparison of the 
classification performance resulting from using the 
PCA tuning algorithm.  It is clear from Figure 3 that the 
PCA tuning algorithm, with no data reduction, reduces 
the classification errors for each of the feature sets 
under investigation; on average there is a 49%, 40% 
and 34% improvement for the TD, AR and TDAR 
feature sets while the PCA tuning with data reduction 
reduces the error by 71%, 73% and 75%.   

 
Figure 4 displays a confusion matrix averaged 

over the four subjects for the TD feature set.  The 
confusion matrix allows for a comparison of the 
classification performance, decision results on a class 
by class basis.  It is observed that PCA tuning results 
in improvements or no change in all classes except 
hand open, which displays a slight decrease in 
classification accuracy. 
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Figure 3:  A comparison of classification errors 
resulting from processing with and without PCA 
tuning.  The PC Best is a result of using PCA 
tuning with the iterative channel growing 
algorithm.  Error bars show 1 standard deviation of 
the intersubject variability. 

 
DISCUSSION 

 
The PCA tuning algorithm yields more accurate 

myoelectric control schemes; however, it does 
increase the complexity of the classifier.  It is important 
that a decision be made by the pattern recognition 
based myoelectric control scheme within 300ms of 
initial intent, which is the upper limit of an acceptable 
delay to the user.  Given a 250ms analysis window, 
approximately 50ms remains in which a decision must 
be made.  Current embedded systems under 
development for controlling powered prostheses can 
easily implement the PCA tuning algorithm within this 
time constraint.  Alternatively, one could shorten the 
analysis window to 125 ms to make faster decisions at 
the expense of a slight degradation of classification 
performance [4].   

 
 

 

Pronation 92.4 97.1 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.1 0.1 0.0 0.0 1.4 0.0 0.0 1.3 0.2 0.0 1.0 4.1 0.1 0.4 0.2

Supination 0.0 0.0 99.3 99.8 0.0 0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.0

Flex 0.5 0.3 0.0 0.0 99.3 99.7 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Extend 0.1 0.0 0.1 0.0 0.0 0.0 90.3 99.1 7.3 0.4 0.0 0.0 1.5 0.4 0.0 0.0 0.6 0.0 0.0 0.0 0.2 0.1 0.0 0.0

Abduction 0.1 0.2 0.1 0.0 0.0 0.0 6.0 0.3 76.0 89.1 0.0 0.0 6.0 6.3 0.0 0.0 11.7 4.0 0.0 0.0 0.2 0.2 0.0 0.0

Adduction 3.5 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 85.9 88.6 2.7 3.5 7.7 1.4 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.0

Open 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.9 0.5 2.6 96.5 93.4 0.0 0.1 1.0 1.1 0.0 0.0 1.8 1.7 0.0 0.0

Key 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 99.0 99.4 0.3 0.0 0.7 0.6 0.0 0.0 0.0 0.0

Chuck 0.0 0.0 0.0 0.0 0.0 0.0 7.2 0.5 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 76.1 91.9 0.0 0.0 14.8 7.3 1.3 0.2

Power 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 4.7 0.5 0.0 0.0 0.1 0.0 12.8 9.4 2.1 2.2 78.9 87.5 1.2 0.4 0.0 0.0

Pinch 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.2 0.1 0.0 0.0 0.0 0.0 0.8 0.0 0.0 13.4 6.7 0.0 0.0 85.6 92.3 0.0 0.0

Rest 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.0 0.0 0.7 0.0 99.3 99.6

Adduction Hand Open Key Chuck Power Pinch RestPronation Supination Flex Extend Abduction

 

 

Figure 4:  Confusion matrix for the TD feature set averaged over the four subjects.  The values in white (left columns) 

show processing without PCA tuning the values in grey (right columns) show the results with PCA tuning with no 

data reduction.   The results along the main diagonal are correct classifications (accuracy), and those lying outside of 

the main diagonal are incorrect classifications (error rate). 



 
The relationship between classification accuracy 

and prosthesis controllability has yet to be clearly 
defined [9].  Although PCA Tuning yields a more 
accurate system, a usability test needs to be 
completed to determine if the increased classification 
accuracy provided by the algorithm translates to 
increased controllability of a prosthesis.  Furthermore 
the application of the algorithm to shorter data 
windows should also be investigated to ensure that the 
improvements gained for 250 ms windows translate 
are applicable to shorter window lengths.  Recent 
research has suggested that although shorter window 
lengths result in a slightly less accurate system, it 
would be more controllable by the user [10]. 
 

Although the iterative channel growing algorithm 
yields good results, a more robust method of data 
reduction is needed.  As the algorithm is currently 
implemented, each channel was used, independently, 
to train and subsequently test classification 
performance.  Consequently the channel growing 
algorithm is highly dependent on the test data.  
Different supervised and unsupervised data reduction 
techniques are currently being investigated.     
 

CONCLUSIONS 
 

A novel PCA tuning algorithm implementation 
was introduced for use with existing MES pattern 
recognition based prosthetic control systems.  MES 
data were projected onto class specific PCA 
transformation matrices for tuning, prior to pattern 
recognition classification.  This pre-processing was 
shown to increase class separability for classification 
by a LDA classifier.  Classification error was reduced 
by 49%, 40% and 34% when using TD, AR and TDAR 
feature sets, respectively.   

A brute force channel reduction algorithm was 
used to further reduce the dimensionality of the data, 
resulting in an error reduction of 71%, 73% and 75% 
for the same feature sets.  Further improvements may 

be achieved by implementing a more focused 
dimensionality reduction algorithm.  The effect of 
increased accuracy due to preprocessing on 
prosthesis usability remains a topic of research and 
investigation. 
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