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INTRODUCTION 

When constructing a clinical diagnostic tool, one 
frequently turns to statistical methods in order to 
discern “diseased” data from that drawn from 
“normative” subjects.  Particular care must be taken 
when using statistical methods in order to ensure that 
the underlying assumptions of the technique are valid 
in the area of application of interest. 

Ideally, when using a two-outcome test, a 
“positive” test outcome is uniquely associated with 
instances of actual disease, and a “negative” outcome 
will be similarly associated with normative data.  It is 
important to note the underlying assumption that the 
samples defining each class in a two-class 
discernment problem all represent the same disease 
state.  This assumption cannot truly be made in most 
cases of diagnostic disease data.  Consider the case 
when a patient begins to exhibit symptoms of a 
disease.  Some fraction of the cells under study in a 
diseased subject will show signs of the disease 
involvement, while other cells may be completely 
healthy. Any measurement of these healthy cells will 
not show any symptoms, and should therefore be 
identified as negative by the diagnostic test.  Stated 
simply:  a data set acquired from a diseased patient 
will contain data representative of both the disease 
and of completely normal cells. 

The application area of interest to the authors is 
quantitative electromyography (QEMG).  QEMG data 
is an important tool that is beginning to be used in 
electrodiagnostic medicine (Brown, Bolton and 
Aminoff, 2002; Doherty and Stashuk, 2003; Preston 
and Shapiro, 2005).  As the mechanism underlying the 
observation of electromyographic data is the proper 
function of individual muscle and nerve cells, the 
proportional involvement of individual cells will have a 
profound effect on whether or not the disease is 
detected. 

In order to evaluate muscle performance, a series 
of motor unit potentials (MUPs) may be acquired; 
these form the smallest functional units of the muscle. 
If MUPs are acquired from a truly diseased patient, it is 
therefore expected that only a subset of these MUPs 
will be produced by diseased tissue.  In turn, this 

implies that the set of MUPs observed in a contraction 
or study acquired from such a diseased individual will 
contain MUPs that should truly have a “positive” test 
outcome as well as “true negative” MUP samples. 

This may cause a significant problem when 
attempting to use a statistical method to obtain a 
robust and accurate method to separate normative 
from diseased data.  When considering Fisher’s (1936) 
Linear Discriminant, it is apparent from the standard 
formulation (Duda, Hart and Stork, 2001, pp. 117-121) 
that good estimates of the mean and covariance of all 
data are required.  If the composition of the diseased 
data includes a significant number of “negative-
outcome” data points, then any estimation of the mean 
(or covariance) based on a the collection of all 
“disease” points will be severely biased.  

METHODS 

We propose a novel technique to calculate the 
vector forming the Fisher Linear Discriminant between 
two classes of data.  In order to establish this vector, 
we rely on the fact that normative data are well 
understood and easy to acquire.   

First, we obtain a mean and covariance for the 
normative (negative-outcome) data set, indicated 
by  
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calculate the Mahalanolbis distance (Duda et al, 2001, 
pp.  35), relative to the distribution of negative-
outcome training points: 
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Equation (1) provides a distance in units of 
standard deviation of any point   
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.  Such a measure can be seen 
to produce the familiar z-scores used in conjunction 
with a table describing a Gaussian probability function.  
The Mahalanolbis distance describes the relative 
probability of association with the distribution 
described by   
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, providing a weighting to 
indicate the likelihood of any point being associated 



with this distribution, versus the likelihood of being an 
outlier, possibly associated with another class (in this 
case, the desired positive-outcome disease class). 

The distribution of negative-outcome points will fill 
a region of some m-dimensional space. The points 
belonging to the “diseased” samples can be visualized 
as forming the tips of arrows emanating from this 
region.  The volume around this region in which the 
majority of the arrows “point” can then be seen as the 
likely volume or site where those points lie that should 
truly be labelled with a positive outcome.  If we 
preferentially count only the arrows that extend out of 
the normative distribution (by using the Mahalanolbis 
distance), then it becomes possible to distinguish 
between the desired positive and negative outcome 
points found in the study of a patient from the diseased 
set. 

By considering the diseased data as a set of 
vectors projecting from the normative distribution, it is 
clear that further information is available by 
constructing a “neighbourhood” measure of the type 
found in Bezdek’s (1981) fuzzy c-means or the 
Kohonen (1989) Self-Organizing Map.  This 
information will provide a means of calculating an 
overall direction.  This will, in turn, determine whether 
or not the vectors point towards the diseased state or 
are simply outliers of the normative distribution.  This is 
achieved through the inter-vector angle 
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constructed from the vectors and their norms and 
relating it to the underlying probability distribution 
function. 

Once constructed, the value

! 

"# (i, j)  is used as the 
distance in a neighbourhood function to determine the 
overall importance of a given vector. 

This neighbourhood function value, 
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vectors acquired from diseased patients using  
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Equation (3) therefore provides a neighbourhood 
weighting that will accentuate vectors that are close 
together over vectors that are distant from each other.  
By combining these 
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 values with the Mahalanolbis 

distance values (
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the diseased data class, we can calculate an inter-
mean vector 
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The units of equation (4) are meaningless (and 
quite large), so the vector reported is converted to unit 
length by scaling it by its norm: 
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RESULTS 

The data set used for the analysis presented here 
contains contraction data obtained from 11 patients 
exhibiting pain characteristic of a particular repetitive 
strain injury (forming the diseased data set), as well as 
from 39 subjects (the normative data set) who were 
asymptomatic for repetitive strain. All subjects 
provided informed consent prior to participation. 

Concentric needle (micro) and surface (macro) 
EMG data were collected from the extensor carpi 
radialis brevis muscle using a 32-gauge concentric 
needle electrode and silver/silver chloride surface 
electrodes located on the skin overlaying the needle 
acquisition site.  Subjects performed repeated 
isometric contractions ranging between 5 and 20% of 
maximum voluntary contraction force.  All acquisition 
was performed using Comperio™ clinical EMG 
amplifiers. Acquisition settings used were as reported 
in Calder, Stashuk and McLean (2006): 10Hz-10kHz 
bandpass for micro data sampled at 31250 
samples/second, and for macro a bandpass of 5Hz-
5kHz at 3125 samples/second. Data acquired were 
then decomposed using the DQEMG algorithm of 
Stashuk (1999). The QEMG features produced by this 
program were then used as the input data for the 
algorithm described here.   

The names of the features collected along with the 
values describing the resulting vector are shown in 
Table I.  The value for each feature is shown as a 



mean over 50 leave-one-out jackknife trials, along with 
the standard deviation calculated over the set of trials. 

In order to provide a comparative result, a naïve 
evaluation of the Fisher linear discriminant was 
performed as described in Duda et al (2001, pp. 117-
121), using the normative and diseased class 
distributions directly (i.e.; without consideration for 
possible normative values in the diseased class 
distribution).  The production of results using this 
method was unsuccessful due to the presence of an 
inverse operation in the calculation of the Fisher 
vector; the disease data acquired for this experiment 
becomes singular in the Fisher decomposition, and 
therefore the textbook calculation of the Fisher vector 
cannot be obtained.   

Using the new method presented here, it is 
therefore possible to calculate a result unavailable 
from the traditional Fisher methodology. As can be 
seen in Table I, the vector values obtained are very 
stable, with a standard deviation in all cases being 
several orders of magnitude lower than the mean.  
Evaluating the classification performance of the 
discriminant on separate testing data gives 62% (std. 
dev. ±0.490) correct classification, with a specificity of 
0.909 (±0.302) and with a sensitivity of 0.538 (±0.505). 
 

Table I: Features Examined and Vector Found 

Feature Name Fisher Vector Units 
 

Micro Features 
  

Amplitude 0.594±5.0e-3 µV 
Duration 0.013±1.1e-4 ms 
Phases 3.4e-3±3.1e-5  
Turns 4.4e-3±3.9e-5  
AAR 1.9e-3±1.8e-5 ms 
 
Macro Features   

Amplitude 0.119±1.0e-3 µV 
Neg. Peak Area 0.717±4.9e-4 µV•ms 
Neg. Peak Amplitude 0.068±5.6e-4 µV 
Neg. Peak Duration 0.034±3.2e-4 ms 
 

Timing Features 
  

IPI Mean 0.091±8.9e-4 ms 
IPI Std. Dev. 0.014±1.6e-4  
IPI Covariance 2.1e-4±2.8e-6  
Inter-Discharge Rate 0.075±7.9e-4 pps 
Firing Rate 0.020±2.0e-4 pps 
Mean Con. Diff 3.4e-4±7.0e-6 pps 
# MUPs 0.313±4.4e-3  
Mean MU Voltage 0.011±8.3e-5 µV 
 

DISCUSSION 

The data in Table I support several interesting 
observations, most notably that the contribution to the 
discrimination between classes is not uniform among 
the acquired features.  Note the relatively high value 
associated with Negative Peak Area; this measure has 
been shown to be informative in identifying fatigued 
versus non-fatigued muscle (Calder et al, 2006), 
presumably resulting from slowed muscle fibre 
conduction velocities, and a similar scenario would be 
expected here. Similarly, given that Phases and Turns 
are not frequently observed in most neuromuscular 
disorders, it is not surprising that the value associated 
with both of these features is more than 100 times 
lesser in magnitude than that of Negative Peak Area. It 
is clear that this classification decision can be made 
with a reduced number of features and that low 
numbers in Table I indicate which features may be 
more easily omitted than those with higher values. 

As the Fisher vector provides a one-dimensional 
projection into a linear space (Duda et al, 2001, pp. 
117), the degree of information present in the vector 
weights will themselves be linearly related allowing the 
relative importance of any feature to be directly read 
from the table. 

CONCLUSIONS 

Several important conclusions can be drawn from 
the presented results: 

the magnitude of a component in an inter-mean 
vector may be useful separating class distributions and 
can be constructed using a neighbourhood algorithm.  
The resulting vector is analogous to the inter-mean 
vector of the Fisher Linear Discriminant, and may 
therefore be used to differentiate between points 
belonging to two different classes. 

such an inter-mean vector may be constructed in 
cases where the traditional approach fails due to 
singularities in the covariance matrix of the data. 

the resulting one-dimensional projection created 
by the inter-mean vector will be useful in assessing the 
relative contribution of each feature to the inter-class 
discernment problem.  Features described with lower 
weights in the modified Fisher vector are less 
important for making this type of decision.  The relative 
importance of these numbers may be described in a 
linear fashion. 

Future work will include the assessment of the 
Fisher vector constructed here along with an inter-
class decision threshold.  The resulting data will allow 
classifications to be made, providing a linear-space 



classifier for diseased MUP data, or other data of this 
form. 
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