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INTRODUCTION 
 

Electronic nose (EN) technology has emerged in 
the last decade as a viable means for analyzing and 
classifying samples based on odour. An EN 
instrument consists of an array of gas sensors that 
respond to a sample’s odorant molecules. A wide 
range of sensor materials now exist, including 
conducting polymers, metal oxides, and quartz 
crystal microbalance [1]. The array is constructed so 
that a wide range of compounds will invoke a 
response from the entire array, with individual 
sensor elements responding differently for samples 
from each odour category. The array response 
forms a unique “smellprint” that can be used to 
discern samples. Among the important advantages 
of EN systems are reduced sample preparation 
effort, decreased processing time, and simplicity of 
operation. As a result, they have been deployed for 
tasks such as process monitoring and quality control 
in several industries including pharmaceutical, food, 
and packaging [2]. 

The ability to process biological samples with 
EN has garnered interest of late – potential uses 
include food safety (detection of bacterial 
contaminants) and clinical diagnosis (pathogen 
identification). In both of these applications, EN 
testing will allow more expeditious results compared 
to traditional laboratory techniques (e.g. 
plating/culturing), thus allowing effective timely 
responses (e.g. issuing recalls and warnings on 
tainted food, or early patient treatment before a 
disease progresses). A growing body of research 
elicits optimism in this regard – the detection of food 
contaminants and pathogens responsible for several 
medical conditions (e.g. urinary tract infection, 
bacterial vaginosis) appear to be viable with 
commercially available EN systems [2,3].  

In this paper, we used two EN modalities to 
investigate the detection and discrimination 
behaviour when processing bacteria samples of 
varying concentration provided by the Canadian 
Food Inspection Agency (CFIA), Ottawa, ON. In the 
food safety application, high sensitivity is of obvious 
importance. E. coli O157:H7, for instance, can cause 
infection at a dose of only 10 cells/mL [4]. Testing for 
the presence and/or type of bacteria in a candidate 

sample should ideally yield accurate results over a 
wide range of concentrations.  

In EN analysis, feature vectors for each sample 
are often highly dimensional, causing an exponential 
increase in volume of the feature space with each 
added dimension. This makes the number of 
degrees of freedom large in such cases, in turn 
causing analysis problems. This curse of 
dimensionality is a significant impediment in 
machine learning systems [5]. In this work, we 
employ uncorrelated LDA (ULDA) [6] feature 
reduction to mitigate this problem in the context of 
detecting and identifying bacteria of different 
concentrations, and compare its performance with 
principal component analysis (PCA). Several pitfalls 
that must be avoided for effective feature reduction 
are also discussed. 
 

 METHODS 
 

2.1 Data Acquisition & Feature Extraction  
The following two commercially available EN 

instruments were used in this work: 
1. metal oxide conductivity sensors (MOS) – 

AlphaMOS FOX [7], and 
2. fingerprint mass spectrometer (FMS) – 

AlphaMOS Kronos [7]. 
In order to promote the release of volatile organic 
compounds (VOCs) into the headspace of the 10mL 
vial containing the sample (thereby giving a stronger 
signal), samples were heated to 100

o
C then agitated 

at 500rpm for 900s prior to EN injection (we used 
1.0mL injection volume for the MOS, 4.0mL for the 
FMS). Raw data for the MOS consists of a 300s time 
series for each of 12 sensor response curves. For 
the FMS, the response intensity of each mass 
fragment between 45-150amu was recorded for 
120s. Feature extraction on the MOS required: 1) a 
fractional difference calculation (to eliminate 
baseline drift); 2) selecting the maximum absolute 
value of the resulting curve; and 3) sensor 
normalization. On the FMS, the features of interest 
were the areas under the intensity vs. time curves 
during the time interval for which the intensity was 
greater half of its maximum value, followed by 
sensor normalization. These features were 
calculated as described in our previous work [8].  
 



2.2 Bacteria Samples 

The samples used were E. coli DH5   and 

Listeria innocua (non-pathogenic bacteria strains) 
cultured in a nutrient broth in the same manner as 
described in [8]. Concentrations of 10

8
, 10

7
, and 10

6
 

cells/mL were obtained through serial dilution of 
dense cultures with additional broth. There were 3 
runs performed (one for each concentration). During 
each run, 18 samples (6 samples from each of the 
three classes: E (E. coli), L (Listeria), B (broth)) were 
prepared at the same time (sample aliquot 2.0 mL) 
and processed by the EN. Samples from each class 
were presented in alternating order. 
  
2.3 Dimensionality Reduction  
PCA – This unsupervised method creates a feature 
vector in a lower dimensional space with a linear 
transformation that represents the original in the new 
space in a least squares sense. Conceptually, PCA 
creates a new basis from linear combinations of the 
original dimensions along which the scatter of the 
data points is greatest. Generally, two or three 
components are sufficient [5]. 
LDA and ULDA – Unlike PCA, these are supervised 
methods (they use the category labels for each 
sample). Linear transformations are calculated that 
discriminate the feature vectors between classes in 
the new space, by maximizing inter-class variation 
and simultaneously minimizing intra-class variation. 
In LDA, the criterion function requires a non-singular 
scatter matrix. ULDA finds application when the 
scatter matrices of the samples are singular (and 
thus non-invertible) – a scenario that can arise when 
there are many more features than samples or when 
the features are highly correlated. ULDA also 
ensures that the new features in the transformed 
space are uncorrelated, and this has the potential to 
give increased classification rates [5,6]. 
 
2.4 Classification and Validation 

Scatter plots of the data in the dimension-
reduced space, while useful for visualization, are not 
sufficient to quantify performance. Instead, a 
classifier is used to assign a category label to a new 
sample (represented with its feature vector) using a 
previously trained model. In this paper, we used two 
types of classifiers: linear and k-nearest neighbours 
(kNN). In order to validate our classification models 
and to estimate the system performance, we 
adopted the commonly used “leave-one-out” (LOO) 
cross validation technique, with overall classification 
accuracy averaged over all possible partitions [5].  
 

RESULTS 
 
3.1 MOS EN 

As the bacteria concentration decreases, we 
expect classification to be more difficult because at 
lower concentrations, the bacteria samples more 
closely resemble the bacteria-free nutrient broth. 
This appears to be validated in Figure 1, where we 
can see better separation of classes at 10

8
 cells/mL 

than at 10
6
 cells/mL.  

Figure 1: MOS EN clustering results showing the first two 
components in the dimension-reduced space. (a) 10

8
 cells/mL, (b) 

10
7
 cells/mL, (c) 10

6
 cells/mL. Cluster centroids are denoted with 

an ‘X’. 

 
Table 1: Scatter and Classification Accuracy results. Normalized 

intra-cluster scatter is defined as the average Euclidean distance 
between each scatter point and the group’s centroid. Mean inter-
class distance is measured between class centroids. k=3 was 

used in the nearest neighbours classifier. 

Conc. 
(cells/ 

mL) 

Intra-cluster 
scatter (as % of mean 

interclass distance) – 
(MOS) 

Classification 
Accuracy, % 

(MOS) 
 

Classification 
Accuracy, % 

(FMS) 
- using kNN 

 Broth E.coli Listeria Linear kNN ALL Reduced 

PCA        

10
8
 32.1 33.8 18.0 94.4 66.7 33.3 50.0 

10
7
 33.1 70.2 96.5 61.1 66.7 27.8 61.1 

10
6
 82.6 119.6 100.6 22.2 27.8 55.6 72.2 

ULDA        

10
8
 5.0 4.0 5.3 94.4 100 66.7 66.7 

10
7
 17.5 23.3 23.1 61.1 55.6 55.6 50.0 

10
6
 36.1 48.2 30.2 22.2 33.3 50.0 61.1 

 
Table 1 quantifies this behaviour with measures 

of intra-class cluster size (normalized by the inter-
class separation). Notice that the supervised 
method, ULDA, performs better than PCA. Upon 
inspection of Figure 1, we would expect that the 
classification accuracy of the system would be quite 
high at all concentrations; however, Table 2 
indicates otherwise – at the lowest concentration, 
the accuracy of the system is similar to the result of 



random guessing. Furthermore, while ULDA gives 
100% accuracy in a specific case (using kNN at 10

8
 

cells/mL), at lower concentrations it does not give 
the improvement over PCA that we might expect 
based on the clustering results. 

The reason for this seemingly paradoxical result 
is as follows. Figure 2 shows a series of plots 
indicating the scatter in the training samples. In each 
plot, a different, randomly selected sample is 
withheld (LOO cross-validation), meaning that the 
training model is built with 17 out of the 18 samples. 
The position and shape of each category’s cluster is 
highly variable within each series (this behaviour is 
more prominent at the lower concentration), 
indicating that the model is sensitive to the 
omission/inclusion of a single sample. This variation 
certainly affects the transformation matrix that is 
subsequently used to classify the withheld test 
sample, resulting in misclassifications.  

 
Figure 2: MOS EN clustering during training, 10

6
 cells/mL. In each 

plot, one randomly chosen sample is withheld and ULDA is 
performed on the remaining 17 samples (small markers). The test 

sample (large marker) is then projected onto the model. The 
shape/colour of the test sample corresponds to the calculated 
category (using the linear classifier) – errors are circled in black.  

 
3.2 FMS EN 

Figure 3 shows the clustering when all of the 
mass spectrometer data (mass fragments 45-150 
amu) are used. Using PCA, class separation is 
clearly not possible, but the extremely tight ULDA 
clusters at all concentrations might suggest excellent 
classification. The results in Table 3 indicate 
otherwise – in this case, the explanation is not solely 
due to the model’s sensitivity to a small number of 
training samples.  

Figure 4 shows raw FMS data, from which it is 
evident that only a few of the lower weight mass 
fragments (<100amu) are responding significantly – 
the others are simply measuring noise. Because the 
feature space is of very high dimension (D=106 in 
this case), ULDA can operate with a large number of 
degrees of freedom to find a projection that 
separates the clusters. This creates problems when 
novel samples are projected onto this model. The 
noise data permits erroneous degrees of freedom 
enabling the training clusters to be tightly defined, 
which causes poor generalization. In order to filter 
out the features that are essentially meaningless 
(causing invalid clustering), we removed those mass 

fragments which were below a noise floor 
(empirically determined; Figure 4) for all samples, 
resulting in 12 retained features. Results are shown 
in Figure 5 and the resulting classification rates are, 
in general, markedly higher (Table 3). 

Figure 3: FMS EN clustering results (all fragments) showing the 
first two components in the dimension-reduced space. (a) 10

8
 

cells/mL, (b) 10
7
 cells/mL, (c) 10

6
 cells/mL. Cluster centroids are 

denoted with an ‘X’. 

 
Figure 4: Raw data (FMS EN) for the 10

8
 cells/mL samples (top 

truncated) with error bars showing standard deviation among 6 
samples in each class.  

 

CONCLUSIONS AND DISCUSSION 
 

In this paper, we have described an application 
that stands to benefit from the sensible use of 
dimensionality reduction. The clustering results that 
we have presented demonstrate that supervised 
methods such as ULDA generate better separation 
between classes than the unsupervised PCA 
method. Using the MOS EN, discrimination becomes 
more difficult as the concentration decreases (from 
100% accuracy at 10

8 
cells/mL to 33.3% at 10

6 

cells/mL, using ULDA and a kNN classifier). 
Curiously, the FMS EN did not exhibit this trend. 
Indeed, with the reduced set of mass fragments, 
similar classification accuracies (roughly 50-70%) 



were seen across all concentrations (using ULDA). 
The clustering behaviour, however, exhibited 
excellent separation in all cases (using ULDA). FMS 
is generally considered to be a more sensitive 
technique than MOS [2]. One possible parameter 
that might contribute to this unexpected result is the 
number of mass fragments used (i.e. noise floor) – 
this, along with the repeatability of the instrument, 
will be a subject of further study.  

We also investigated the EN’s ability to detect 
bacteria (as opposed to discriminate) – here, the E. 
coli and Listeria samples were combined into one 
category. The best classification results obtained 
were – at 10

8
 cells/mL, 94.4%, at 10

7
 cells/mL, 

94.4%, and at 10
6
 cells/mL: 77.8%.  

Figure 5: FMS EN clustering results (after elimination of noisy 
fragments) showing the first two components in the dimension-
reduced space. (a) 10

8
 cells/mL, (b) 10

7
 cells/mL, (c) 10

6
 cells/mL. 

Cluster centroids are denoted with an ‘X’.  

 
The performance of linear and kNN classification 

methods were similar. This implies that it is possible 
to compare dimensionality reduction methods 
without the results being too sensitive to the 
classifier type. Linear classification has the 
advantage of being simple (no parameters to 
choose), but the kNN classifier is able to generate 
complicated decision boundaries and might be 
useful for more difficult applications, along with other 
tools such as multilayer perceptron [5]. 

During the course of our investigation, we 
uncovered several potential difficulties that must be 
avoided when using the methods described herein: 
1. Techniques that show promising clustering 

results during training do not necessarily 
generalize well with novel samples. We 
demonstrated this with the MOS EN, in which a 

small number of training samples led to 
classification models that are overly sensitive to 
individual data points.  

2. It is important to eliminate noisy features before 
dimensionality reduction; otherwise the training 
model is fallaciously optimistic (due to the 
increased degrees of freedom), and will not 
generalize well. This was shown with the FMS. 
We should emphasize that these pitfalls can be 

partially overcome by using a greater amount of 
training data. Experimentation (with synthetic data) 
has shown that classification models built with many 
more samples are more robust, and lead to higher 
classification rates (that are more in line with what 
we expect based on promising clustering results). 
The relatively small number of samples (n=18 at 
each concentration) used in this study contributed to 
the lower classification rates. This study represented 
preliminary work in this application and did not allow 
us to precisely determine the concentration 
thresholds of bacteria detection and discrimination. 
Further work is presently being done (at lower 
concentrations than 10

6
 cells/mL) to quantify these 

thresholds. We have, however, demonstrated that 
supervised dimensionality reduction methods (like 
ULDA) can increase the classification performance 
at lower bacteria concentrations when compared to 
PCA. The cost for this potential improvement is 
vigilance in the manner in which they are applied. 
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