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INTRODUCTION 

Much of the biomechanical research over 

the past 20 years has investigated the influence 

of potential injury risk factors in isolation [1]. 

More likely, multiple biomechanical and clinical 

variables interact with one another and operate 

as combined risk factors to the point that 

traditional biomechanical analysis methods [2-

3] cannot capture the complexity of these 

relationships. Multivariate analysis and machine 

learning methods are necessary to identify 

these complex associations. However, to build 

accurate classification models, an adequate 

number of samples are needed, which grows 

exponentially with the number of features used 

in the analysis. Therefore, to directly meet this 

need we have developed the infrastructure and 

established a worldwide and growing network 

of clinical and research partners all linked 

through the world’s first automated 3-

dimensional (3D) biomechanical gait data 

collection system: 3D GAIT. Considering that 

traditional data analytics may not be able to 

handle these large volumes of data [4], 

appropriate “big data” analysis methods must 

be developed [4]. This paper begins with an 

introduction to our 3D GAIT, followed by an 

overview of a big data problem in running 

biomechanics. Next, a comprehensive overview 

of our proposed and existing methods [2-3,5-8] 

on the role of big data analytics is presented. 

3D DATA COLLECTION SYSTEM 

The 3D GAIT system is a deployed turnkey 

motion capture platform specifically designed 

for gait analysis using a treadmill. The overall 

system design is a nexus of 3 main principles: 

(1) ease-of-use/automation, (2) biomechanics 

best practices, and (3) data science best 

practices. Consequently, the system uses off-

the-shelf passive motion capture technology, 

consisting of between 3 and 6 infrared cameras 

(Vicon Motion Systems, Oxford, UK) along with 

spherical retroreflective markers that are pre-

configured for ease of placement on the 

subject. Rigid clusters of markers are strapped 

to the subject’s thighs, shanks and pelvis, and 

markers are taped to the shoes in groupings to 

define foot movement. During a treadmill 

session, the cameras operate at 200 Hz for 30 

seconds, collecting approximately 150,000 data 

points representing the 3D coordinates of each 

marker. These marker data are transformed 

using rigid-body kinematics [9] into joint 

angles, which are 3D representations of body 

movements between segments, over time. 

Joint angles from treadmill gait represent a 

set of non-independent, time-series waveforms, 

and there are several types of analyses that 

can be undertaken. In terms of biomechanics 

best practices, it is considered appropriate to 

determine a “characteristic” pattern of motion 

that is representative of the movements for a 

given subject. Therefore, the 3D GAIT system 

derives a “characteristic” pattern from a spatio-

temporal normalized set of gait cycles, which 

are segmented using a machine learning 

approach to account for inter-subject variability 

in technique [10]. These normalized gait cycles 

can then be analyzed by: 1) collapsing into a 

single representative time-series data set by 

various averaging techniques, and 2) extracting 

discrete features from each cycle separately, 

and merging into a representative feature set 

for a given subject. 

After processing, and according to best 

practices in data science, the final data set is 

anonymized and packaged for transport.  

Marker data from the motion capture system, 

along with biomechanical feature vectors and 

demographic information (i.e., height, mass, 
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age, etc.) are securely transmitted via end-to-

end encryption to the central server for further 

processing and storage in a database. These 

aggregate data, along with critical yet 

anonymized subject characteristics, allow the 

potential to statistically model lower limb injury 

and disease outside of the laboratory setting. 

More importantly, all data from each centre are 

automatically entered into a research database. 

This growing worldwide network currently 

consisting of 15 research and 50 clinic partners. 

BIG DATA PROBLEM 

Analysis of running biomechanical data can 

be considered a big data problem, in the light 

of the “5V” definition [11], as follows: 

1) Volume (quantity of data): Traditional 

biomechanical analysis generally involves only 

a few variables and low subject numbers. 

Recent biomechanical research, however, the 

number of variables has increased to ~50-150 

discrete variables [2-3], several hundred to 

thousand variables for joint angle time-series 

data [5,7], and several thousand to hundred 

thousand variables for marker coordinate time-

series data [12-13]. While most of these 

studies continue to involve only a small cohort 

of subjects (10-30) in the analysis [14-15], our 

database can provide a large cohort of subjects 

(e.g. 400-500 subjects [2]). 

2) Variety (different data categories): 

Recent biomechanical analysis involves data 

from motion capture and also wearable sensors 

and clinical data: self-reports and lab exams. 

These data would include continuous, discrete, 

and categorical data and thus sophisticated 

statistical methods need to be employed. 

3) Velocity (fast generation of new data): 

Running related-injuries are often chronic in 

nature and rehabilitation often takes weeks-to-

months. In order to monitor the progress of a 

rehabilitation program, gait data are generally 

collected at baseline, and some data are 

collected once a week over several weeks of 

the program. On average, 25 new patients are 

added each week to our database, and 12-15 

new clinic partners are added each year. 

4) Veracity (quality of data): Although in 

general, there is a large divide between clinical 

research and clinical practice. Since the same 

data collection system is implemented in both a 

laboratory and clinical setting, data from 

motion capture in our database are generally of 

high quality. However, there is the possibility to 

have incomplete clinical data (self-reports and 

lab exams).  Fortunately, big data analytics can 

handle incomplete data sets when necessary. 

5) Value (in the big data): Although the 

potential value associated with these complex 

and large data is very high, the real value of 

big data analytics in running biomechanics still 

remains to be proven. Much more sophisticated 

analytics, which incorporate a priori knowledge 

are necessary. In addition, multivariate analysis 

and machine learning methods could potentially 

be utilized as an automated system for 

detecting gait changes related to injury. 

DIMENSIONALITY REDUCTION 

Initial features 

Most investigations of running biomechanics 

are based kinematic data and have focused on 

events of the gait waveform such as angles at 

touchdown and toe-off. Descriptive statistics 

such as peak angles and excursion are 

commonly extracted from the gait waveform as 

well. However, traditional approaches call for 

the a priori selection of features, which relies 

on sufficient background knowledge and/or 

subjective opinion. In traditional analysis 

methods, a large portion of the kinematic data 

is discarded, which may contain meaningful 

information related to the between-group 

differences. While traditional approaches have 

analysed each joint motion separately, recently 

the full data set - either a set of representative 

variables across joints and planes of motion [2-

3] or the entire running waveform [5,7] - have 

been employed as the initial features. However, 

the dimensionality of the initial features used in 

the analysis should be carefully chosen due to 

the fact that several dimensionality reduction 

methods require an adequate number of 

samples to obtain stable results. For example, 

Barrett and Kline [16] recommended that the 

number of subjects should be at least 50 for a 

principal component analysis (PCA) method. 

Unfortunately, initial research involving big data 

methods have involved small cohort of subjects 

(10-30) [14-15]. Thus, to minimize the high-

dimensionality of the data, big data in terms of 
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big volume (a large cohort of subjects) is 

needed, which can be fulfilled by our database. 

Feature selection 

Instead of choosing the appropriate features 

based on investigator’s background knowledge, 

feature selection approaches return a subset of 

the original features using a combination of a 

search strategy with an objective function. The 

simplest and most popular approach is to select 

features with the highest relevance to the 

target class [2-3,5]. There are two types of 

measure to score features: filter and wrapper. 

Wrapper methods use a specific classifier with a 

cross-validation method to provide a score or 

the classification rate [6,17] for each subset. 

Although wrapper methods provide the best 

performing feature set for a specific classifier, 

there is no guarantee that this feature set will 

perform the best for other classifiers. Moreover, 

the computational cost of wrapper methods is 

higher than filter methods. To perform wrapper 

methods for big data, a parallel computing 

version of cross-validation may be necessary 

[4]. In contrast, filter methods use interclass 

distance, or information-theoretic measures, to 

provide a score. Measures in this field include 

the effect size [2-3] and the scores of 

significant tests. Although mutual information 

has not been applied in this field [18], this 

measure offers some potential when initial 

features consist of both categorical data and 

continuous/discrete data. While filter methods 

generally provide lower prediction performance 

than wrapper methods, a selected feature 

subset is more general and so it is useful for 

exposing the associations between features. 

Filter methods can also be used as a 

preprocessing step [5] for feature extraction, 

allowing this method to obtain stable results 

when the dimensionality of initial input is high. 

For a search technique, a sequential forward 

selection (SFS) algorithm is one of the most 

common search procedures by adding features 

sequentially. This algorithm has achieved good 

classification performance to select a subset of 

discrete variables in our investigations [6,17]. 

However, the sequential algorithms have a 

tendency to become trapped in local minima, 

especially when dimensionality is very high. To 

deal with a higher-dimensional data, algorithms 

incorporating randomness into their search 

procedure are needed to escape local minima, 

e.g. genetic algorithms (GA). Several popular 

search techniques have also been developed to 

work in parallel computing and can be used for 

big data analytics such as parallel GA [4]. 

Feature extraction 

Instead of selecting the original features, 

feature extraction approaches transform all the 

existing features into a new lower-dimensional 

space. The data transformation can be either 

linear (as in the most popular method in this 

field, PCA [2-3,7,12-15,17]) or non-linear (e.g. 

kernel PCA [8] and self-organizing maps, 

(SOM) [19]). Specifically, for PCA researchers 

often use only the first few, or lower-order PCs, 

which are associated with the most dominant 

movement patterns. For instance, these PCs 

are useful for identifying differences in running 

gait patterns between sex- and age-groups [3]. 

In contrast, intermediate- and higher-order PCs 

are often associated with subtle movement 

patterns. Our research has shown that these 

PCs are useful for identifying changes in 

biomechanics after a rehabilitation protocol for 

injured subjects [3]. PCA can also be extended 

to model data distributions in high-dimensional 

space by using a kernel trick called “kernel 

PCA.” The performance of this method for 

identifying sex and age differences in running 

gait patterns increases as compared to using 

the linear PCA [8]. However, the computational 

cost of these non-linear methods (kernel PCA 

and SOM) is high in comparison to linear 

methods, and it may cause a problem in big 

data analysis. Therefore, supervised feature 

extraction methods, i.e., a linear discriminant 

analysis (LDA) and its extended versions should 

be investigated in future work [20]. 

CLASSIFICATION AND CLUSTERING 

After a final feature vector is created, a 

supervised or unsupervised learning approach 

is needed to perform the classification or 

clustering. For classification, the most popular 

supervised learning method in this field is a 

support vector machine (SVM) [2-3,6-7,12-13]. 

SVM builds a model that predicts whether a 

new subject fits best in one category or the 

other (a binary linear classifier). SVM can also 

efficiently perform a non-linear classification as 
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well as a multiple classification using multiple 

binary classifiers. However, the linear kernel 

exhibits better classification performance as 

compared to non-linear kernels: polynomial and 

RBF [6]. For a robust model, an LDA classifier is 

recommended [17,20]. Unlike SVM and LDA, 

AdaBoost is another classifier wherein the 

training process performs the implicit feature 

selection [21]. However, AdaBoost is sensitive 

to noisy data and outliers. On the other hand, 

when the target classes are not available, 

cluster analysis is needed, e.g. to determine if 

running patterns for healthy subjects could be 

classified into homogeneous subgroups [7]. 

CONCLUSION 

In recent years, technological advances now 

provide researchers with large amounts of data, 

which can be explored for meaningful patterns.  

However, traditional data analytics cannot 

handle these large volumes of data. Therefore, 

we have developed an automated 3D 

biomechanical gait data collection system and 

applied various “big data” statistical methods. 
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