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ABSTRACT 

It was hypothesized that muscle activation 
levels (MAL’s) in the upper limb and trunk 
muscles are correlated with the magnitude of the 
load in the hands during a manual lifting task. An 
experimental study was run to examine alterations 
in the muscle activation patterns when lifting 
different loads. EMG signals from the biceps 
brachii, triceps brachii, anterior deltoid, thoracic 
erector spinae, lumbar erector spinae and the 
external oblique muscles were recorded. A system 
was developed using nonlinear modelling and 
EMG signal characteristics to correctly predict the 
load in the hands.  

 
INTRODUCTION 

Low back disorders are commonly developed 
with repetitive manual lifting [1]. Examination of 
the forces and moments that occur at the level of 
the L4/L5 vertebrae during manual lifting is 
needed to better understand joint loading and 
injury [2,3]. To find these forces and moments, 
the weight of the load being lifted must be known. 
In one study, wrist force has been estimated from 
the muscle activation levels (MAL’s) of the upper 
arm muscles [4], however, there is no published 
work on predicting the weight lifted during 
manual lifting tasks. Thus, the purpose of this 
study is to develop a model to predict load lifted 
in the hands using kinematic and MAL data from 
arm and trunk muscles. EMG and position and 
orientation data were recorded as different loads 
were lifted in the hands using specific lifting 
postures and a model to predict the load lifted was 
determined. This information will be incorporated 

into an on-line system for detecting peak and 
cumulative joint loading at the lower back which 
is being developed as part of a larger study. 

METHOD 

Six adult males with no evidence of back pain 
were recruited for this study. The subjects read 
and signed an information and consent form 
approved by the Queen’s University Research 
Ethics Board. Each subjects’ age, height, weight, 
arm length and trunk height were recorded.  

Surface EMG signals were recorded from the 
biceps brachii, triceps brachii, anterior deltoid, 
thoracic erector spinae (T9), lumbar erector spinae 
(L4) and the external oblique muscles. The signals 
were recorded using the Bortec® surface EMG 
system with a gain of 1000 on each channel. After 
the EMG electrodes were attached, subjects were 
asked to produce 3 maximum voluntary static 
contractions (MVC’s) for each of the measured 
muscles, with 2 minutes rest between each effort.  

After the MVC exercises were completed, 
single Polhemus Fastrak®, motion tracking 
receivers were placed on the subject’s forearm, 
upper arm, neck and lower back using stretchy 
adhesive medical grade fabric to record the 
subject’s kinematics. 

The subjects were then asked to perform a 
series of lifting exercises. This involved lifting a 
box from the floor onto a shelf at waist height and 
then lifting the same box from the shelf back to 
the floor. The lifts were done using stoop, squat 
and freestyle postures. For each posture, the box 
was weighted to 5kg, 10kg, 15kg, 20kg and 25kg. 
Subjects also performed a lift with no weight in 
the hands (zero-load). For each position and 



weight, subjects repeated the lift-lower cycle three 
times; a total of 48 lift cycles were performed in 
an experimental session (6 weights x 3 postures x 
3 trials). 

 
Data Processing 

 
All EMG signals were sampled at a rate of 

1024Hz. Subsequent EMG signal processing was 
done using Matlab v7.0. The raw EMG data were 
band-pass filtered at 30 – 400Hz, rectified and 
then low pass filtered using a second order 
Butterworth filter at 2.7Hz to obtain the linear 
envelopes (LE’s) [5].  

Lift duration was defined as the time between 
when the box was lifted off the floor (or shelf) 
and when the box was released onto the shelf (or 
floor). This was determined with the aid of two 
switches, one on the handle and one on the bottom 
of the box. When the box was at rest, a constant 
(dc) voltage was recorded by the EMG recording 
system. When the subject grasped the handle of 
the box, this voltage dropped to a different dc 
level, and the dc level dropped again when the 
box was lifted off the surface on which it was 
resting. EMG LE values between the start and end 
of each lift were used in the subsequent analysis.  

The LE’s from all lifting trials were 
normalized to the maximum EMG activity 
attained during the MVC trials (MVC 
normalization). Mean value, peak value and area 
under the graph were calculated for the MVC 
normalized EMG LE’s and non-normalized EMG 
LE’s. The mean, peak and area of the non-
normalized EMG LE’s were also normalized 
using the mean, peak and area of the EMG LE for 
the no weight lift (zero-normalization condition). 
As well, the mean, peak and area of the no weight 
lift were subtracted from the mean, peak and area 
of the non-normalized EMG LE’s (zero-minus 
condition).  

A correlation comparison between the weight 
of the box and mean value, peak value and area 
under the graph for the MVC normalized, zero-
normalized and zero-minus EMG LE’s was 

calculated using Microsoft Excel 2002. A 
nonlinear model was then developed to predict 
weight lifted from the EMG parameters. 

 
RESULTS 

 
 The results of the correlation analysis are 

shown in Table 1. Since the zero-normalized and 
zero minus EMG parameters exhibited higher 
correlations with the box weight, these values 
were used in the system modeling.   
 

Table 1: Correlation Values between the EMG 
Parameters and Load for Squat Lift 

Correlation 
with weight 

lifted 
MVC  

Normalization 
Zero-

Normalization
Zero-
Minus 

Bicep Area 0.522 0.690 0.687 
Bicep Mean 0.586 0.616 0.641 
Bicep Peak 0.451 0.599 0.736 

Deltoid Area 0.307 0.677 0.792 
Deltoid 
Mean 0.368 0.795 0.855 

Deltoid Peak 0.361 0.484 0.774 
L4 Area 0.013 0.755 0.685 
L4 Mean 0.030 0.760 0.720 
L4 Peak -0.163 0.564 0.440 
Oblique 

Area 0.504 0.421 0.426 
Oblique 
Mean 0.530 0.364 -0.003 

Oblique 
Peak 0.506 0.069 0.328 

T9 Area 0.413 0.332 0.535 
T9 Mean 0.467 0.406 0.541 
T9 Peak 0.465 0.252 0.477 

Tricep Area 0.464 0.635 0.624 
Tricep 
Mean 0.577 0.584 0.691 

Tricep Peak 0.621 0.472 0.268 
 
A nonlinear parallel cascade model [6] was 

developed to predict load lifted from the EMG 
signal parameters which were most highly 
correlated with load. Since the biceps, deltoid and 
L4 EMG parameters have higher correlations with 
the weight lifted than the other muscles; they were 
used in the development of the predictor model. 



The system used can be seen in Figure 1. A model 
has been developed for the squat lift posture using 
area (x1), peak (x2) and mean (x3) of the zero-
normalized EMG LE recorded from the erector 
spinae (L4 level). This particular cascade gave the 
most accurate load prediction with an error of 
±1kg. The model was developed using the EMG 
data from the six subjects. Then the model was 
tested by predicting the weight for each individual 
lifting trial. Table 2 gives the mean and standard 
deviation of the weights predicted for each of the 
six subjects.   

 

 
Figure 1: Parallel cascade structure for the squat 
lift data with n cascades: where x1, x2, x3 represent 
the LE mean, peak and area parameters for each 
subject and y is the predicted weight. 

 

Table 2: Predicted Weight Statistics 
Intended Weight 

(kg) Mean 
Standard 
Deviation 

5 4.9884 0.1521 
10 10.0918 0.3244 
15 14.9362 0.3068 
20 19.9764 0.0919 
25 25.0067 0.0633 

 

DISCUSSION 

Subject anthropometrics play a key role in the 
effects of lifting weight in the hands. For subjects 
who are heavier, the weight of a manual load is a 
smaller percentage of their total body weight and 
may require less energy and thus lower MAL’s 
when lifting. However, this does not take into 
account the subjects’ ability to lift or their overall 
fitness level which will also impact the effects of 
lifting a weight. In this study, data were 
normalized to minimize the anthropometric 
effects. 

MVC exercises were completed to create a 
baseline to normalize the EMG. As seen in Table 
1, the EMG characteristics that were processed 
using zero-normalization and zero-minus showed 
better correlation with load than values which 
were MVC-normalized. Producing an MVC can 
be uncomfortable for the subject and for accuracy 
purposes multiple MVC exertions are often 
needed. A zero weight lift is more comfortable 
and easy to perform in the workplace, allowing 
the load prediction algorithm to be more easily 
incorporated into real-time monitoring devices.  

These preliminary results indicate that load 
lifted in the hands during a manual lifting task 
using a specific lifting posture (squat lift) can be 
predicted from EMG recorded from the erector 
spinae muscles at the L4 level. Additional models 
are being developed for the different lift postures 
– the stoop and freestyle lifts.  
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