
MYOELECTRIC CONTROL DEVELOPMENT TOOLBOX 
 

Adrian D. C. Chan, Geoffrey C. Green 
Department of Systems and Computer Engineering, Carleton University, Ottawa ON 

INTRODUCTION 

Surface myoelectric signals (MES) can be used as 
effective input for the control of upper arm prostheses. 
The concept of myoelectric control was introduced in 
the 1940’s [1]. Initially, amplitude measures were used 
to parameterize the MES, but simple approach 
imposed a practical limit of a three state system for 
each MES control site (e.g. rest, hand open, and hand 
close) [2]; therefore, to implement a multifunctional 
prosthetic control system, additional MES control sites 
were required. Graupe and Cline [3] parameterized the 
MES using an autoregressive-moving-average model, 
instead of simple amplitude measures, and were 
successful at discerning multiple intended limb 
movements from a single MES control site. This result 
demonstrated that given the proper signal features, it 
was feasible to implement a multifunctional prosthetic 
control system. 

Hudgins et al. [4] employed pattern recognition 
techniques to exploit the presence of a deterministic 
pattern during the onset of contractions. A system was 
constructed that was capable of discerning four limb 
motions, at an accuracy of around 90% for normally 
limbed subjects and around 85% for amputee 
subjects; however, users were required to control the 
system through contractions that were initiated from 
rest, preventing users from switching between states 
in a continuous and intuitive manner. In recent years, 
continuous myoelectric control methods have been 
developed to provide an intuitive user interface [5]. 

The process of pattern recognition can be broken 
down into three main phases: feature extraction, 
feature reduction, and classification. Within the system 
there may also be some pre-processing (e.g. 
amplification, filtering) and post-processing (e.g. 
smoothing). Feature extraction refers to the 
transformation of the input signal into a set of 
representative signal features. Zardoshti et al. [6], 
evaluated a number of features that are now 
commonly used for MES classification, including: 
integrated absolute value, zero crossings, and 
autoregressive coefficients. Other features including 
time-frequency features (e.g. wavelets and wavelet 
packets) have also been investigated [7]. 

The process of feature extraction may (and often 
does) result in feature vectors with high dimensionality. 
Feature reduction is employed to reduce the 
dimensionality, simplifying the task of the classifier and 
diminishing effect of the curse of dimensionality (i.e. 
the exponential increase in the feature space with the 
addition of each new feature) [8]. Ideally, feature 
reduction proceeds in a manner that reduces intra-
class variations, while inter-class variations are 
maintained or enhanced. In addition to improving the 
signal quality and reducing the noise, feature reduction 
may also seek to reduce redundancies in the feature 
vector. Englehart et al. [7] compared principal 
component analysis (PCA) and feature selection 
based upon a Euclidean distance class separability. 
Chu et al. [9], employed a linear-nonlinear method 
combining PCA and a self-organizing feature map. 

Classification maps feature vectors into specific 
classes, with the mapping function determined using 
training examples. Various classification methods have 
also been employed including linear discriminant 
classifiers [7], multi-layer perceptrons (MLP) [7][9], 
fuzzy systems [10], hidden Markov models [11], and 
Gaussian mixture models [12]. 

While research in pattern recognition for 
myoelectric control is quite abundant, the ability to 
adequately compare methods is wanting. Indeed, 
results are quite dependent upon the data and 
implementation details. In this paper, we describe a 
simplistic pattern recognition system which is based on 
a linear discriminant classifier. This system is used to 
compare feature reduction methods, which 
demonstrates superior performance of uncorrelated 
linear discriminant analysis (ULDA) to PCA feature 
reduction. The source code for this implementation is 
made publicly available with the intent that this method 
will form a common baseline measurement against 
which other algorithms can be compared. There will be 
a continual expansion of the publicly available tools to 
include newer methods as research in this topic area 
progresses. 



METHODS 

Development of this pattern recognition library is 
performed using Matlab (Mathworks Inc., Natick, MA). 
Note that some of the code has dependencies on 
functions from certain Matlab toolboxes. Other 
dependencies on other third party toolboxes will be 
explicitly noted. This pattern recognition library is 
available at http://www.sce.carleton.ca/faculty/chan. 
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Figure 1: Sliding analysis window 

 

Feature Extraction 

Features are computed from the MES using a 
sliding analysis window. An example of the sliding 
window is depicted in Figure 1, shown with analysis 
windows of 256 ms in length, spaced 32 ms apart. A 
single feature vector is produced from each analysis 
window. 

Feature extraction methods that have been 
implemented include features for: root mean square, 
mean absolute value, integrated absolute value, 
autoregressive coefficients, zero crossings, and slope 
sign changes. 

Feature Reduction 

Feature reduction methods that have been 
implemented are PCA and ULDA. PCA is an 
unsupervised method (i.e. the method does not require 
class labels) of feature reduction. It is a statistical 
method that identifies the linear projection of features 

that correspond to the principal variations in the data. 
LDA is a supervised method (i.e. the method uses 
features with class labels), which maximizes the ratio 
of the between-class distance to the within-class 
distance. This method suffers from the problem of 
singularity in the scatter matrix that occurs in 
undersampled problems (i.e. when the feature vector 
dimension is much larger than the sample size). ULDA 
is an enhancement to LDA, which imposes the 
additional requirement that reduced features be 
statistically uncorrelated with one another; thus, 
minimizing redundancies. The singularity problem is 
resolved using the generalized singular value 
decomposition [13]. 

Classification 

Classification is simply performed using an linear 
discriminant classifier. The advantage of this classifier 
is that it does not require iterative training, avoiding the 
potential for under- or over-training. In addition, a high 
dimensionality problem can be well linearized during 
feature reduction if done properly. This reduces the 
potential that non-linear classifiers, such as MLPs, will 
achieve high classification accuracies. 

Data 

Example data were used to demonstrate this 
pattern classification toolbox. These data are the same 
data used in [14], which were collected from 30 
subjects. MES were collected from seven sites on the 
forearm and one site on the bicep using Duo-trode Ag-
AgCl electrodes (Myotronics, 6140). An Ag-AgCl Red-
Dot electrode (3M, 2237) was placed on the wrist to 
provide a common ground reference. These signals 
were amplified (Model 15, Grass Telefactor), with a 
gain of 1000 and bandwidth of 1 Hz to 1 kHz. Signals 
were sampled at 3 kHz using an analog-to-digital 
converter board (National Instruments, PCI-6071E). 
MES data were downsampled to 1 kHz prior to pattern 
classification. 

MES data were collected as the subject underwent 
seven distinct limb motions: hand open, hand close, 
supination, pronation, wrist flexion, wrist extension, 
and rest. Within each trial, the subject repeated each 
limb motion four times, holding each motion for a 
duration of three seconds each time. The order of 
these limb motions was randomized. A five-second 
rest period was introduced at the start and end of each 
trial to avoid data being cutoff while collecting the data, 
making each trial 94 seconds in length. A total of six 
trials were complete in a session, with four sessions 
completed on four separate days. 

In this paper, data from only session four were 
used. Data from the first two trials were used as 
training data and data from the remaining four trials 



were used as testing data. The first four 
autoregressive coefficients and the root mean square 
value were used as the feature vector (dimensionality 
is 40 = 8 channels × 5 features/channel). The analysis 
window size was 256 ms (it is generally agreed that a 
delay that is less then 300 ms is acceptable for 
myoelectric control [5]), which were spaced 128 ms 
apart for training data and 32 ms apart for testing data. 
Data that were 256 ms before or after a change in limb 
motion were removed from the training set to avoid 
transitional data. 

RESULTS 

The classification error from the testing data was 
10.56% (with no feature reduction). To improve 
classification accuracy, majority vote post-processing 
can be employed. The majority vote uses the current 
classification result, along with the previous 8 
classification results (with an analysis window spacing 
of 32 ms, this corresponds to the classification results 
within the last 256 ms) and makes a classification 
decision based on the class that appears most often 
(Figure 2). The resulting effect is a smooth operation 
that removes spurious misclassification. Indeed, the 
classification error reduces to 9.39% after majority 
vote post-processing. 
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 Figure 2: Majority vote post-processing 

 
A plot of the classification sequence is shown in 

Figure 3. One can see that the pattern recognition 
algorithm is quite successful at classifying the MES 
data. The errors that are present occur during 
transitional periods, which are expected as the system 
is in an undetermined state between contractions. 
Indeed, if we removed the analysis windows that are 
256 ms before and after the transition, the 
classification error is 7.46%. 

The reason why feature reduction was not needed 
with these data is twofold. First, we have a rich training 
data set, which is important in any classification 

problem. Simply stated the number of training data 
and the diversity of the training data should be 
representative of the data that one would encounter in 
the test data. The second factor is the high 
dimensionality of the feature vector, which increase 
the probability that the data can be linearly separable. 

 
Figure 3: Classification sequence 

Figure 4 is a plot of the classification accuracy as 
a function of the feature dimensionality. Feature 
reduction was performed by randomly selecting 
features (the plot includes the mean and standard 
deviation of a 10 trials), PCA, and ULDA. As expected, 
increasing the dimensionality of the feature vector 
reduces the classification error. For the random 
selection of features, the classification error does not 
reach its minimum until all the features are selected. 

PCA reduces the feature dimensionality by 
selecting a new feature space based on the 
eigenvectors with the largest eigenvalues. Essentially, 
this keeps the parts of the data with the highest 
variance. These parts often contain the “most 
important” information for discrimination; however, this 
is not necessarily true. Examining Figure 4, we can 
see that the addition of each new principal component 
does result in a large decrease in classification error, 
especially compared to a method that randomly 
selects features; however, it is does not reach its 
minimum until all the features are selected. 

Figure 4 clearly shows that ULDA outperforms 
PCA. This is not unexpected because PCA is an 
unsupervised feature reduction method, while ULDA is 
a supervised method. Instead of simply choosing 
feature projections based on variance, ULDA chooses 
feature projections that optimize class separability. 
The resultant feature vector, after feature reduction, 
will have a dimensionality that is less than the number 



of classes. In this analysis, the number of classes is 
seven, and ULDA attains the minimum classification 
rate with six features. Indeed, this is why Figure 4 only 
plots ULDA results for six features or less. 

 
Figure 4: Classification accuracy as a function of the 

feature vector dimensionality (lower graph is an 
expanded plot of the upper graph) 

DISCUSSION 

Results in this paper demonstrate that a relatively 
simple pattern classification system can achieve high 
classification accuracy. One can improve classification 
accuracy by changing the pattern recognition 
components in the system. For example, different 
features, feature reduction methods, and classifiers 
may yield an improved system. The system presented 
in this paper establishes a good baseline to which 
other systems can be compared. This includes 
comparisons in system complexity. This is of particular 
importance for myoelectric control systems, where the 
computational requirements are important in an 
embedded system implementation (e.g. computation 
load, power requirements, system robustness). 

This paper also compares two different feature 
reduction methods: PCA and ULDA. While PCA is 
shown to be more effective than random selection, the 
minimum classification error is not achieved when 
PCA feature reduction is used. 

Results clearly demonstrate that ULDA 
outperforms PCA feature reduction. The feature vector 
can be reduced by almost a factor of 7, without any 
increase in classification error. This significantly 
simplifies the task of the classifier. Indeed, classifiers 
using machine learning algorithms (e.g. MLPs) could 
be trained faster and be less susceptible to over- or 
under-training. 

CONCLUSIONS 

A simplistic pattern recognition system for 
myoelectrically controlled upper arm prostheses is 
presented. This system uses RMS and autoregressive 
coefficients as features. Effective feature reduction is 
demonstrated using ULDA. With a linear discriminant 
classifier, an average classification accuracy of 
92.54% was achieved over 30 subjects. 
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