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Abstract— Early detection of heart sounds can significantly
reduce mortality rates by allowing physicians to intervene on
time. However, manual heart sound analysis is subjective and
relies heavily on the skills and experience of the physician. For-
tunately, deep learning has emerged as a promising method
for heart sound classification. Time-frequency representations
(TFR) such as spectrograms, continuous wavelet transforms
(CWT), and Mel-Frequency cepstral coefficients (MFCC) have
been widely accepted input representations for heart sound rep-
resentation. This study proposes a combination of fractional
Fourier time-frequency representation (FrFT TFR) and a deep
learning model for heart sound classification. It uses a public
dataset to demonstrate the efficacy of the proposed representa-
tion.Classification using a deep learning model with FrFT TFR
as input outperforms that obtained with spectrograms and
MFCC as inputs by approximately 4% and by 13% over CWT
as inputs. The results underscore the effectiveness of using
FrFT TFR for heart sound classification for initial heart sound
diagnosis.
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transform, Deep learning, MFCC

I. INTRODUCTION

Cardiovascular disease is a significant health threat with high
mortality rates. In 2016, around 17.9 million deaths were
recorded [1]. Early diagnosis of heart conditions can reduce
the mortality rate. Heart sound auscultation is a non-invasive
and cost-effective tool that can be used to detect cardiovascu-
lar diseases and, in particular, the functioning of heart valves.
In particular, this cost-effective diagnosis is suitable for de-
veloping countries [2]. However, the accuracy of diagnosis
relies on the skill and experience of the physician. An auto-
mated system can eliminate this shortcoming and aid physi-
cians to diagnose cardiovascular diseases in their early stages.

Recent advancements in the field have demonstrated the
potential of heart sound classification using deep learning,
particularly with time-frequency representation (TFR) as in-
put and hold promise for improving the efficiency and ac-
curacy of cardiovascular disease diagnosis. Various TFRs
such as Mel-frequency cepstral coefficients (MFCCs), con-
tinuous wavelet transform (CWT), and spectrogram have
been proposed for heart sound classification. MFCCs have
been widely used to transform the PCG signal from a
one-dimensional time domain to a two-dimensional time-

frequency domain. In [3], MFCC and PCG signals were
used as inputs for 2-D and 1-D convolutional neural net-
works. MFCCs with time and time-frequency features were
used as input to feed-forward neural networks in [4]. In [5],
MFCCs with a spectrogram and mel spectrogram were used
to train three independent VGG16 while MFCC and the dis-
crete wavelet transform (DWT) were employed as input to the
LSTM classifier in [6]. Also, MFCCs and time and frequency
features were extracted from segmented signals and fed vari-
ous classifiers such as LSTM and SVM in [7] for heart sound
classification.

The spectrogram and CWT are commonly used TFRs in
heart sound classification. Spectrogram of heart sound was
used as input to ResNet18 model [8], custom CNN [2] for
extracting abstract features to train a fully connected neural
network for classification. In [9], spectrogram was used as in-
puts to the pre-trained VGG16, VGG19, and AlexNet models
to extract features to train a support vector machine (SVM)
classifier. CWT generated using the Morse wavelet was em-
ployed as input to pre-trained VGG16 and AlexNet for fea-
ture extraction and SVM was used for classification [10, 11],
while AlexNet was used for both feature extraction and clas-
sification [12]. Morelet wavelet was employed as input to a
shallow CNN [13].

Although various TFRs yield satisfactory results, this
study aims to further enhance the classification performance
by employing fractional Fourier Transform-based TFR
(FrFT TFR). This approach involves transforming the input
signal into the fractional Fourier domain and subsequently
computing TFR such as FrFT spectrogram, FrFT CWT, and
FrFT MFCC. The fractional Fourier Transform (FrFT) is a
generalized form of the Fourier transform, symbolizing a ro-
tation of a signal in a time-frequency plane. By accommo-
dating signals in any intermediate domain between time and
frequency, the FrFT can handle non-stationarity in signals
and filter out noise with simultaneous temporal and spectral
overlap with signals [14, 15]. The contributions of this paper
are as follows: FrFT TFR, specifically FrFT spectrogram,
FrFT CWT, and FrFT MFCC, are proposed to improve heart
sound classification. A comparison between FrFT TFR and
conventional TFR is presented to demonstrate the effective-
ness of FrFT TFR for heart sound classification. Addition-
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Fig. 1: Overall diagram of the proposed method. DN & ATT indicate
DenseNet and attention.

ally, a deep learning model comprising DenseNet, attention
mechanisms, and classification blocks is also proposed for
classification. This is the first-ever study using FrFR TFR for
heart sound classification.

II. METHODOLOGY

The overall proposed diagram is shown in Figure 1. The
proposed method transforms the heart sound signal into the
fractional Fourier transform domain, followed by calculating
TFRs of the transformed signals, such as spectrogram, CWT,
and MFCC. Subsequently, the DenseNet block is employed
to extract features from the TFRs, and these features are then
fed into an attention method to recalibrate the extracted infor-
mation. Finally, the attention features are concatenated and
input into the classification block to yield the final classifica-
tion results.
A. Fractional Fourier transform

The fractional Fourier Transform (FrFT) stands as a general-
ized form of the Fourier transform, symbolizing a rotation of
a signal in a time-frequency plane, and it enables a more flex-
ible time-frequency representation. By accommodating sig-
nals in any intermediate domain between time and frequency,
the FrFT proves advantageous for non-stationary signal pro-
cessing such as heart sound [15, 16, 17]. The elements of the
FrFT matrix Fα is given as

Fα(m,n) =
N−1

∑
k=0

uk(m)exp
(
− jπkα

n

)
uk(n), (1)

where 0 < m,n < N − 1, u is a discrete Hermite-Gaussian
function of order 2, and 0 ≤ α ≤ 2 is a fractional order. Then,
the FrFT transform is the matrix-vector multiplication of the
transform matrix Fα(m,n) (as given in equation 1) with the
signal vector. It is worth mentioning that when α = 0 or
α = 2, Fα(m,n) is the identity matrix, and the transform is
equivalent to the identity operator on the signal. Additionally,

the Fourier transform is the spatial case of FrFT when α = 1.
The heart sound signal of s of length N is transformed into
a corresponding real-valued signal in the fractional Fourier
domain for each α in the following manner.

xα = ℜ{Fα × s} (2)

where ℜ denotes the real part of the complex vector of length
N.
B. Time-Frequency representations (TFRs)

For completeness, a summary of different Time-Frequency
transforms (spectrogram, CWT, MFCC, and MFSC) is given
in this section. The spectrogram is the squared magnitude of
the short-Fourier transform (STFT) coefficients of the signal
xα . The STFT of signal xα is given below

ST FT (n,k) =
n

∑
m=n−(Nw−1)

w(n−m)xα(m)exp(
− j2πmk

N
),

(3)
where w is window function with nonzero values of n from 0
to Nw −1. The CWT of signal xα(i) is described as [18]

CWT (a,b) =
1
|a|

∫
∞

−∞

xα(t)ψ ∗
(

t −b
a

)
(4)

where ψ∗ denotes the complex conjugate of the mother
wavelet (Morse wavelet in this work). Where a and b are
dilation and translation parameters, respectively. The Mel
frequency cepstral coefficients (MFCCs) is another time-
frequency representation of the signal [19]. The input signal
undergoes pre-emphasis using the filter H(z) = (1−0.9z−1),
followed by framing into short segments. The Fourier trans-
form of these short frames is computed, and the power of the
transformed frames is then mapped into the mel-scale using
triangular overlapping windows. The mel-scale is defined by
the equation

Mel( f ) = 2595log10

(
1+

f
700

)
, (5)

where f represents the frequency in Hz. Subsequently, the
logarithm of the discrete cosine transform (DCT) of the mel-
scaled map is calculated to derive the MFCC features.
C. Deep learning models

The deep learning model comprises three blocks: the
DenseNet block, the attention block, and the classification
block. The DenseNet block is employed to extract features
from the input TFRs and comprises a dense and transition
modules. The dense module consists of four convolutional
layers with the ReLU activation function, followed by batch
normalization and dropout layers with a ratio of 0.5 to prevent
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overfitting. The filter size is set to 3× 3, the number of fil-
ters is 32, and the compression is 0.5. The output of the con-
volutional layers is then fed to the transition module, which
includes a convolutional layer with a filter size of 1× 1, fol-
lowed by dropout with a ratio of 0.5 and average pooling lay-
ers with pooling size of 2×2 to reduce the number of model
parameters.

The attention block is inspired by [2], and it contains two
submodules: the channel attention module (CHA) and the
coordinate attention module (COA). The CHA recalibrates
channel-wise features using global average pooling to ob-
tain channel-wise statistics. The CHA is defined as CHA =
ReLU(W2σ(W1GAP(F))), where W1 and W2 are the weights
of fully connected layers, F is the feature, GAP is the global
average pooling layer, and σ is the sigmoid function. On the
other hand, the COA is employed to capture both channel
relationships and long-range dependencies. It first encodes
vertical and horizontal pooling along the respective coordi-
nates, concatenates the encoded features, and feeds them to a
convolutional layer with an H-Swish activation function. The
resulting output is split into separate tensors along the spatial
dimension. Each split tensor is then passed through a convo-
lutional layer and a sigmoid activation function to obtain two
scores (s1 and s2). Finally, the attention score is computed by
multiplying both scores (s1 ∗ s2). Notably, the convolutional
layer in COA has a filter size of 1.

The classification block comprises a batch normalization
layer, an average pooling layer, a fully connected layer with
5 neurons, and a softmax activation function.

D. Data preparation and training model

The proposed method is assessed using the dataset provided
in [20]. This dataset comprises a total of 1000 records across
five classes: 200 records for normal (N), 200 for aortic steno-
sis (AS), 200 for mitral stenosis (MS), 200 for mitral regur-
gitation (MR), and 200 for mitral valve prolapse (MVP). The
dataset, sampled at a frequency of 8000 Hz, was collected
from diverse sources, including two books and 48 websites.
A five-fold cross-validation is applied to partition the dataset
into training and testing sets, with the results reported as the
mean over five iterations. The evaluation metrics are sensitiv-
ity, specificity, precision, f1 score, and accuracy.

The dataset is pre-processed by resampling each record to
1000 Hz and filtering it using a Butterworth bandpass filter
of order 6 with a cut-off frequency between 25 and 400 Hz.
This filtering process is employed to remove baseline drift
and interference noise, such as noise from blood flow, en-
vironmental factors, and physical contact between the body
and the sensor [21]. A constant window with a length of 3
seconds is extracted from each record, and if the recording
is less than 3 seconds, zero-padding is applied to achieve a

Table 1: Comparison performance of time-frequency representation
with/without FrFT transform.

TFR Sensitivity Specificity Precision F1 score Accuracy
FrFT Spectrogram 95.51 98.85 95.85 95.37 95.40
Spectrogram 90.46 97.75 92.45 89.98 91.00
FrFT CWT 94.35 98.60 94.59 94.33 94.40
CWT 81.57 95.32 84.36 80.70 81.20
FrFT MFCC 98.42 99.60 98.42 98.39 98.40
MFCC 94.52 98.60 94.65 94.43 94.40

consistent length. Subsequently, the FrFT is employed with a
fractional order ranging from 0 to 1.9 in steps of 0.1. In other
words, each record is represented in 20 different fractional
Fourier domain. Following this, the time-frequency represen-
tation (spectrogram, CWT, and MFCC) of each transformed
signal is computed. For the spectrogram, a hamming win-
dow with a length of 125 ms and 64 ms overlapping is used,
and the same window length and overlapping are employed
for both MFCC with 20 bands while the Morse wavelet has
a = 10 and b = 60. The time-frequency representation is then
fed into the DenseNet block to extract features, as shown in
Figure 1. The extracted features are used as input to the at-
tention block to emphasize useful features and reduce irrel-
evant ones. Finally, the recalibrated features from each frac-
tional time-frequency domain are concatenated and fed into
the classification block for the final classification into five
classes. The deep learning model is trained using categorical
cross-entropy as the loss function, Adam as the optimization
method, and 300 epochs. A model checkpoint is implemented
to save the best model based on the evaluation loss, and the
learning rate is decreased by a factor of 10 for every 50 epoch,
with the initial learning rate set at 0.0001.

III. RESULTS
Table 1 shows the results obtained using FrFT TFR
(FrFT Spectrogram, FrFT CWT, and FrFT MFCC) in com-
parison to using TFRs only (Spectrogram, CWT, and MFCC).
Table 1 demonstrates that FrFT significantly improves the
classification performance. Specifically, FrFT Spectrogram
outperforms spectrogram by approximately 4%, FrFT CWT
surpasses CWT by approximately 13%, and FrFT MFCC
exceeds MFCC by approximately 4% based on accuracy.
Overall, FrFT consistently provides superior results for heart
sound classification. The most significant improvement in re-
sults is observed with FrFT MFCC, highlighted in bold in
Table 1.

These findings emphasize the effectiveness of integrating
FrFT transformations with Spectrogram, CWT, or MFCC in
the proposed deep learning model. Furthermore, Figure 2
shows the confusion matrices for the proposed methods, com-
paring the use of FrFT against not using FrFT for each class.
Once again, the confusion matrix with FrFT demonstrates
superior performance compared to the time-frequency repre-
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sentation without FrFT. Notably, the best results are achieved
when utilizing FrFT MFCC as input to the proposed method,
with correct classifications of 198, 192, 198, 198, and 198 for
N, MVP, MS, MR, and AS classes, respectively ( see Figure
2 (c)). In contrast, without FrFT, the correct classifications
decrease, especially for the normal (N) class, dropping from
198 to 177 (see Figure 2 (f)). This decline in correctly classi-
fied records, particularly for the normal class, highlights the
significance of employing the FrFT transform in the proposed
method, as supported by the confusion matrices.
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Fig. 2: The confusion matrices depict the performance of the proposed meth-
ods with and without FrFT transforms in first and second rows respectively.
Spectrogram, CWT and MFCC results are shown in the first, second and
third columns respectively.

IV. CONCLUSION
A deep learning-based heart sound classification model us-
ing a FrFT TFR for transforming the heart sound signal was
proposed. FrFT TFR produces better results than traditional
TFR, such as spectrogram, CWT, and MFCC. However, the
improvement is achieved at the expense of the number of pa-
rameters in the classifier model. The classifier model using
traditional TFR has fewer parameters (40K) than the models
that use FRFT TFR (700K). These findings underscore the
effectiveness of using FrFT TFR as input to a deep learning
model to enhance classification performance. Future work
will focus on implementing advanced techniques to deter-
mine an optimal fractional order to further improve classi-
fication performance and reduce the number of parameters in
the proposed models.
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