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Abstract—Sleep Apnea is a breathing condition character-

ized by episodes of reduced airflow during sleep, with the air-

way partially (hypopnea) or fully (apnea) obstructed. Conven-

tional methods of diagnosis include overnight sleep studies, 

which are resource and time intensive. Previous studies have 

shown that heart rate and heart rate variability are associated 

with sleep apnea severity. However, the performance of these 

features in detecting respiratory events (apnea or hypopnea), 

and particularly in unknown datasets, was not examined. We 

trained a set of conventional machine learning models to label 

segments of electrocardiography data based on whether they 

contained apneas or hypopneas. Tuning hyperparameters using 

leave-one-subject-out cross-validation, logistic regression was 

found to have strong performance across area under the re-

ceiver-operating curve, accuracy, specificity, sensitivity and F1 

score metrics, with scores of 0.736±0.102, 72.3±15.8%, 

92.0±4.8%, 27.7±16.9%, and 31.7±17.4%, respectively. The ap-

plication of this model to another dataset, the apnea-ECG da-

taset, showed an average accuracy of 60.7%. We have also as-

sessed whether there were age- or sex-based differences in 

model performance. This study thus provides a workflow for 

comparing machine learning models for apnea detection and 

highlights how models may not perform as strongly on other da-

tasets.   
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I. INTRODUCTION  

A. Sleep Apnea 

Sleep Apnea is a breathing condition resulting in reduced 

airflow during sleep, with an estimated 30% of Canadians at 

intermediate or high risk [1]. The reduced airflow can fall 

into two main categories, apneas and hypopneas depending 

on the level of airway obstruction [2]. Detecting sleep apnea 

starts with preliminary screening including sleep history, 

questionnaires (Epworth Sleepiness Scale, STOP-BANG), 

and physical examinations to look for indicators of sleep ap-

nea, [2]. If preliminary screening indicates possible sleep ap-

nea, the next step is either a home sleep apnea test, or a pol-

ysomnography (PSG), which is considered the gold standard 

for diagnosis [2]. PSGs, the gold standard, involve monitored 

in-lab sleep sessions that record signals such as electrocardi-

ogram (ECG), electromyogram, and oxygen saturation [3]. 

PSGs are considered accurate but are time and resource in-

tensive and require operator expertise [2]. Challenges with 

conventional sleep apnea diagnostic methods, including 

costs, availability, and extensive time requirements [4], have 

motivated development of computer assisted diagnosis [5]. 

B. Predicted Indicators of Sleep Apnea 

To facilitate computer assisted diagnosis, key features of 

ECG signals are extracted and used in the classification 

model. For this investigation, heart rate (HR) and heart rate 

variability (HRV) were extracted from an ECG. HRV is a 

measurement of the changes in the intervals between heart-

beats, and there are a variety of metrics analyzing this varia-

tion in both time and frequency [6]. Time based metrics of 

HRV represent the overall variability in HR, whereas fre-

quency-based metrics provide information about the power 

distribution of the signal [7]. HR and HRV metrics were se-

lected for the classification model as people with sleep apnea 

have been shown to have higher resting HR, and observable 

differences in HRV components [8]. 5-minute segments are 

recommended as windows to capture the variability in the 

signal [7]. 

C. Related Works 

Many previous works [5], [9]–[14] have used the apnea-

ECG database [15] for computer assisted diagnosis. With this 

dataset, HRV metrics with time and frequency domain fea-

tures have been used to achieve accuracy above 90% [9], but 

many methods have included manual annotation in their 

pipeline [16], [17]. Beyond HRV, deep learning models such 

as convolutional neural networks [11] and long short-term 

memory models [5], [13] have been investigated. Despite 
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strong performance, the applicability of these models to other 

datasets is underexplored and is crucial for mitigating the gap 

between model performance “locally” and at other sites, mo-

tivating our approaches in this study. This project aims to de-

velop a model to detect apneas and hypopneas using only 

ECG signals and assess performance by validating the model 

across other datasets. 

II. METHODS 

A. Dataset 

The dataset used to train the model is available on Physio-

Net [18] and contains 25 overnight PSGs of individuals with 

suspected sleep apnea or primary snoring [19]. For each par-

ticipant, respiratory events during sleep were annotated by a 

sleep technologist and a file of event types (apneas/hypop-

neas) and duration is provided. Of the 25 subjects, 21 are 

male and 4 are female, average age is 50 ± 10 years (range: 

28-68), and average body mass index (BMI) is 31.6 ± 4.0 

kg/m2 (range: 25.1 - 42.5 kg/m2) [19]. Only the ECG signals 

were analyzed.  

B. Signal Preprocessing 

To extract HR and HRV metrics (selection in Table 1) 

from the ECG signal, recordings were processed using the 

NeuroKit2 Python toolbox [20]. The signals were cleaned 

and denoised, and peaks and features were extracted using 

the algorithm suggested by NeuroKit2. The ECG signals 

were windowed into 1-minute non-overlapping segments for 

the entire recording to match the provided labels in the da-

taset. HR was calculated based on these 1-minute intervals, 

but for HRV a window of 5 minutes was used to follow es-

tablished guidelines to account for signal variability [7]. 

There was a total of 10,274 windows used for training with 

84 features included for each window.  

Table 1 Selection of HRV features used for classification 

Feature Description 

Time 

HRV Mean NN Mean NN interval in signal 

SDNN 
Standard Deviation of NN intervals 

in signal 

Frequency 

Low Frequency 

(LF) 

Power Spectrum, Frequency Range 

0.04 - 0.15 Hz 

High Frequency 
(HF) 

Power Spectrum, Frequency Range 
0.15 - 0.4 Hz 

LF/HF Ratio LF to HF Power 

C. Model Development 

Machine learning models were trained using leave-one-

subject-out cross-validation due to few subjects in the dataset 

[21]. Linear and non-linear classifier models from the follow-

ing list were implemented using the scikit-learn Python li-

brary [22]—logistic regression, K-nearest neighbours, linear 

support vector machine (SVM), decision tree, random forest, 

neural net, AdaBoost, naive bayes and quadratic discriminant 

analysis (QDA). Hyperparameters for models were tuned. To 

assess model performance, accuracy, specificity, sensitivity, 

and F1 score were calculated from true positive, true nega-

tive, false positive, and false negative predictions. Model per-

formance was also evaluated by area under the receiver-op-

erating curve (AUROC) to assess how well the models can 

discriminate between windows with and without respiratory 

events (Fig. 1). 

 

 

Fig. 1 Methodology followed including data acquisition, signal processing, 

and model development. 

 Results 

D. Model Training 

Models were trained sweeping across different hyperpa-

rameters to achieve optimal accuracy. For the best model of 

each type, the accuracy, F1 score, sensitivity, specificity, and 

AUROC were computed for both the training and validation 

set for each cross-validation fold. 

To perform subsequent analysis, the logistic regression 

model was selected as the best model for comparison. The 

decision to choose this model was based on a good ability to 

discriminate between examples with and without respiratory 

events, demonstrated by the highest mean AUROC, and per-

forming well across other metrics. This model was then 

trained on all the subjects in the initial dataset. 
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E. Out-of-Sample Validation 

The logistic regression model was used to predict respira-

tory events for each subject in the secondary dataset. A sum-

mary of performance metrics was generated for each subject, 

with the average results shown in Table 2 for the cross-vali-

dation with the initial dataset and the out-of-sample valida-

tion. The model tends to correctly predict windows where no 

respiratory events occur, but has a high number of false neg-

atives, indicating it tends to predict the absence of a respira-

tory event even when one is occurring. 

Table 2 Performance Metrics for LOSO Cross-Validation of Initial Dataset 

and Out-of-Sample Validation 

Metric LOSO Performance 
Out-of-Sample Per-

formance 

Accuracy 72.3 ± 15.8% 60.7 ± 26.9% 

Specificity 92.0 ± 4.8% 87.7 ± 0.1% 

Sensitivity 27.7 ± 16.9% 13.8 ± 17.0% 

F1 Score 31.7 ± 17.4% 15.0 ± 14.1% 

AUROC 0.736 ± 0.102 0.569 ± 0.175 

 

To address any specific differences in model performance 

due to age, sex, or BMI, a statistical analysis was conducted 

using JMP, a statistical software program [23]. For each cat-

egory, the subjects were divided into one of two groups, age 

greater than or less than 50, sex of male or female, and BMI 

over or under 35. Using a one-way ANOVA, a statistically 

significant difference was found in validation accuracy be-

tween the two age groups (p< 0.0001), as well as by sex (p= 

0.012). The power of the age-based test was 99%, however 

the residuals were not normally distributed so the conditions 

to use ANOVA were not met. 

The model’s tendency to classify a window as not an ap-

nea on the validation dataset, even when one occurs, results 

in a higher number of false negatives. False negatives could 

lead to under-detection of respiratory events.  

III. DISCUSSION 

Models achieved similar accuracy to conventional ma-

chine learning models in a prior work [13]. Despite similari-

ties with prior work, F1 scores from our models are consist-

ently lower than those found in literature. This is likely due 

to how skewed the dataset is, having mainly windows with-

out apneas. Thus, despite accuracy score, our models have a 

high false negative rate, leading to low sensitivity and a low 

F1 score. Future work may explore larger datasets for with 

more balanced group sizes or to use sampling strategies [24]. 

The AUROC values, in Table 2, demonstrate that our 

models can discriminate between windows with and without 

apneas, as these values exceed 0.5. This implies the threshold 

for labeling an example as an apnea could be adjusted to im-

prove detection of apneas at expense of more false positives.  

The statistically significant (p<0.0001) difference in per-

formance between model performance on subjects of differ-

ent ages also warrants discussion. It is possible that the mod-

els perform worse on older adults since they have more 

apneas in our dataset and our model is conservative in label-

ing a window as containing an apnea. As our model under-

predicts apneas, this could explain poorer performance on 

groups with higher incidence of these events.  

A. Limitations and Next Steps 

Due to the small sample size and lack of intersectional di-

versity within the datasets, our ability to compare model per-

formance in different subgroups was limited. For example, 

while the apnea-ECG dataset does contain 7 female partici-

pants, 6 participants with a BMI above 35 kg/m2, and 13 par-

ticipants above age 50, none of the female participants belong 

to these at-risk groups based on age and BMI. Intersectional-

ity is thus important to be considered in participant de-

mographics. We urge future researchers to consider this 

when selecting participants for studies regarding sleep apnea 

and encourage more datasets to be made openly available. 

Future work should also perform investigations on the im-

pact of window size on results. The model developed in this 

paper considered 1-minute non-overlapping windows, and as 

such there is a possibility of only the last second of a window 

containing the respiratory event, making it unlikely for the 

model to correctly identify the event. Changing the window 

size, or considering a combination of overlapping time win-

dows, could create a more representative model that would 

better account for the time to see physiological changes. 

B. Significance 

With the present low diagnosis rate of sleep apnea [25], an 

automated method to detect respiratory events could serve as 

an additional screening tool. A cited barrier to diagnosis has 

been poor coordination of health services with long wait 

times for assessment and a delay in receiving results [26]. 

Automating detection with models like those developed in 

this report could support at-home screening tools and reduce 

time needed interpreting the studies. Left untreated, sleep ap-

nea is associated with daytime sleepiness and cardiovascular 

disease [4]—an automated method could help improve treat-

ment rates, improving health and quality of life. 
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IV. CONCLUSION 

The linear regression model presented displays promising 

initial results towards automated classification of respiratory 

events based solely on ECG signal. The results of testing and 

out-of-sample validation indicate future work should focus 

on minimizing false negatives. Given the negative health out-

comes associated with sleep apnea, further attention on auto-

mated apnea classification is valuable for diagnosis. 
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