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Abstract— Enhancing athletes' performance and prevent-
ing injuries increasingly require an understanding of lower 
limb kinematics, particularly in the rehabilitation of lower 
extremities using a cycling ergometer. There are several 
methods for capturing and simulating kinematics and kinetics 
of body motion. Motion capture systems are a common tool 
for motion studies, that involve placing reflective markers on 
the lower limbs (at about 36 locations), as well as the use of 
cameras to track the trajectory of markers. However, marker-
based systems require complex and expensive equipment and 
are limited to the laboratory environment. Moreover, the sys-
tem might face some difficulties in finding trajectories of 
markers when they are occluded by body parts or equipment 
in the study. Although there are some techniques to predict 
the location of the missing markers in the recorded data, they 
are typically time-consuming and require expert users to per-
form. Thus, the purpose of this study is to integrate machine 
learning (ML) methods to develop a model that can predict 
markers’ location during a cycling task on a stationary bicy-
cle. The model inputs were individual’s anthropometric in-
formation, including weight, age, gender, and height, as well 
as the cycling device dimensions. A NN model was trained 
by providing ground truth labels from the motion capture sys-
tem. The coefficient of correlation between the predicted and 
actual knee joint angle was 0.99, indicating an excellent over-
all performance of the model. However, for certain angles, 
the error between the predicted and actual knee joint angle 
was 20%.  

Keywords— knee kinematics, injury prevention, lower limb, 
machine learning, cycling ergometer, Neural Network, regres-
sion model. 

I. INTRODUCTION  

Studying kinetics and kinematics of lower limb motion en-
hances understanding of the biomechanics of movement and 
provides a tool to reduce the risk of injury, improve body per-
formance, and advance therapeutic medical devices [1], [2], 

[3]. Training devices, such as cycling ergometers, are com-
monly used for personal training and rehabilitation purposes. 
Numerous studies have been conducted on cycling devices to 
reduce the risk of injury and improve performance [1], [2]. 
The impact of these devices on health and human body per-
formance is assessed through the study of motion kinetics 
and kinematics, muscle activation, physiological reactions, 
and biological responses. A de facto standard for studying the 
kinematics of motion is marker-based motion capture sys-
tems. However, these systems involve marker placements on 
multiple anatomical locations that is associated with human 
error and reduced repeatability [6]. The effect of human ex-
perience on the results of marker-based motion studies is 
magnified when smaller body parts are being studied, be-
cause of the limited range of motion and increased possibility 
of markers occlusion. For example, tracking human ankle 
joint angle or foot motion is significantly affected when a 
marker is misplaced by a few millimeters, while studying 
knee joint angle is less affected by variation in marker place-
ments. Recently, a variety of markerless studies, such as vi-
sion-based methods, have been developed in the fields of bio-
mechanics [6]. However, these methods are currently limited 
to specific motions in laboratory conditions and are not gen-
eralized. For instance, walking, jogging, or jumping were 
studied with markerless methods, while activities that in-
volve complex movements performed by multiple individu-
als at high speeds presented challenges when using marker-
less methods. Some complicating factors include the 
occlusion of markers by body parts or objects and the blend-
ing of trajectory markers within the camera's focal line. 
Moreover, the sensitivity of cameras to reflective surfaces is 
another challenge, which will make the postprocessing time-
consuming [4]. 

We aim to reduce the limitations of the marker-based mo-
tion methods for analyzing the kinematics of pedaling task 
on a cycling ergometer by training a Neural Network (NN) 
regression model that can predict marker’s location on lower 
limb using subject’s height, weight and the cycling ergometer 
dimensions. 
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II. PROPOSED METHODS  

A. Participants 

To train the ML model, we recruited 10 healthy par-
ticipants (Female: 5, Male: 5) with no recently reported inju-
ries in the lower limbs, height 150-185 cm, and weight 55-90 
kg. Ethics approval was obtained from the University of Cal-
gary Ethics Board (Ethics application #2452).  

 
B. Test protocol 

After measuring participant’s weight and height, 
they were outfitted with 36 reflective markers on anatomical 
landmarks as described in Fig. 1 and Table. 1. Subjects per-
formed 3 static and 1 dynamic trials for camera calibration 
[8], [9] followed by the main test. The main test involved 24 
trials of pedaling, each lasted 15 seconds, using a cycling er-
gometer. Participants pedaled at self-selected and maximum 
cadences, with four different saddle positions in both hori-
zontal and vertical directions with a step size of 13.50 mm. A 
motion capture system with 10 cameras (Vicon Motion Sys-
tems Inc., Oxford, UK) (Vicon®, 2002) at a sampling rate of 
100 Hz, captured the trajectory of markers during the test. 
This set of data was used to measure kinematics parameters 
which then were considered as ground truth for training the 
NN model. The test began with the left pedal at 3 o'clock po-
sition for each trial [7]. Later, all the collected data were la-
beled and processed in Nexus software (Nexux2.15).   

 
Figure 1- (a) Schematics and (b) actual locations of 36 

markers placed on the subject to track the body segments mo-
tion. 

 

Table 1 Description of marker's location           

 
Finally, a musculoskeletal model was created by im-

porting Vicon’s data for each marker into OpenSim-inverse 
kinematics (IK) tool (version 4.3). Our hypothesis was that a 
trained NN model can predict the knee joint angle by provid-
ing the participants anthropometric data and cycling device 
dimensions in each crank position for every time frame.  

C. Machine Learning Model-Neural Network (NN) 

The NN was used because of its flexibility and ability to 
adapt to database where there are a variety of input parame-
ters influencing the outcome. To train the NN model for the 
estimation of knee joint, a dataset consisted of nine inputs 
was used, including weight, height, the saddle position, the 
pedal coordination in each x, y, and z axes, cadence, duration 
of each cycle and time. First, the data was split into training, 
validation, and test sets with the ratio of 70%, 15%, and 15%, 
respectively. The validation set was used to detect early signs 
of overfitting and the test set was considered to ensure an un-
biased estimation of the model’s performance on unseen 
data. Then to prepare the input data for the NN, the dataset 
was scaled using Min-Max scaling function (between 0 and 
1). TensorFlow library was used for training, validation, and 
testing with a batch size of 64 and a maximum of 100 epochs. 
Three hidden layers were created with 128, 64, and 32 neu-
rons in each layer with a ReLu activation function, which fol-
lowed by a 0.5 dropout to prevent the over-fitting. An output 
layer consists of one unit with a linear activation function was 

Marker Location Marker Location 

1 Sternum 19 L.LFE 

2 C7 20 L.MFE 

3 R.shoulder 21 R.DLS 

4 L.shoulder 22 R.PALS 

5 R.ASIS 23 R.PPLS 

6 L.ASIS 24 L.DLS 

7 R.PSIS 25 L.PALS 

8 L.PSIS 26 L.PPLS 

9  R.HJC 27 R.Lateral Malleolus 

10 L.HJC 28 R.Medial Malleolus 

11 R.DLT 29 L.Lateral Malleolus 

12 R.PAT 30 L.Medial Malleolus 

13 R.PPLT 31 R.2ndMetatarsal Head 
14 L.DLT 32 R.5thMTP 
15 L.PAT 33 R.Calcaneus 

16  L.PPLT 34 L.2ndMetatarsal Head 

17 R.LFE 35 L.5thMTP 

18 R.MFE 36 L.Calcaneus 

a 

b 
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created. For the optimization of the model, the ’Adam’ opti-
mizer (with a learning rate of 0.001) and the loss function 
with the ‘patience” of 20 were used. This means that for 
every 20 data samples, the learning rate decreases and stops 
the training when there is not any improvement in the output 
after checking 20 data samples. Moreover, the callback class 
and early stopping were implemented to help improve train-
ing efficiency and prevent over-fitting. 

III. RESULTS 

In the designed regression model, Root Mean Squared Er-
ror (RMSE) and R2 were calculated as the metrics to evaluate 
the performance of the loss function and model prediction. 
The R2 for the knee joint angle was 0.99±0.12 and the RMSE 
was 2.12±0.71. 

The comparison between the predicted knee joint angle by 
the NN model (red dashed line) and the OpenSim (blue solid 
line) is provided in Fig. 2. The good overlap between the two 
methods is an indication that the NN model predicted the 
knee joint angle very well compared to the one calculated us-
ing the human body model in OpenSim. 
 

 
Figure 2- Comparison between knee joint angle in degrees 

(°) calculated in OpenSim (blue solid line) and predicted 
from NN model (red dashed line) 

IV. DISCUSSION   

This study presents a successful development of a NN 
model for the prediction of the knee joint kinematics during 
cycling tasks. Based on the model's performance metrics, we 
can see that it captures the complex relationship between var-
ious cycling parameters and knee angle. The employed NN 
model showed promising results in predicting the knee joint 

angle, and it can be generalized and applied to predict the 
kinematics of other joints in individuals with different fitness 
levels and age ranges. Nevertheless, it is important to recog-
nize that the predictive performance may vary based on the 
cycling modality, such as indoor versus outdoor cycling, and 
different cycling power levels. As a result, further studies 
could incorporate larger and more diverse participant cohorts 
and investigate additional features to enhance predictive ac-
curacy. Furthermore, for more accurate results, the NN archi-
tecture, optimizer, and training parameters, such as hyperpa-
rameters, could be further adjusted to improve the model 
performance. The developed NN model and markerless ap-
proach could have substantial implications for clinical prac-
tice, especially in sports medicine and rehabilitation clinics. 
Here, analyzing patients' movements provides critical infor-
mation that aids in making informed decisions for devising 
more effective treatments. The developed NN model can also 
be used to develop personalized training programs, optimize 
cycling technique, and reduce risk of injuries by predicting 
anormal large knee joint angles during the exercise. Improv-
ing this model and expanding it into other body joints can 
also be considered in future studies.  

V. CONCLUSIONS  

This study demonstrated that the ML integration, particu-
larly NN models, in the study of human body motion during 
pedaling, can predict joint kinematics with a high accuracy 
Moreover, it has the potential to overcome the constraints as-
sociated with the conventional use of motion capture sys-
tems, especially for pedaling task, where some markers may 
be occluded by bicycle frame and not captured by cameras in 
specific positions. The result of this study can be extended to 
clinics, or in research labs without access to the motion cap-
ture system. The proposed method offers multiple benefits, 
such as the potential for extension to the study of additional 
body parts and the advantage of saving time and costs com-
pared to using motion capture systems. Improving and opti-
mizing the proposed method will pave the road for develop-
ing efficient and cost-effective methods for conducting 
kinematics analyses. 
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