
 

 

1 

A Scoping Review of Current Methodologies of Measuring Cardiopulmonary 

Coupling and their Limitations in Sleep Apnea Detection 

Mahnoor Memon1,2, Xinyi Zhang1, Shaghayegh Chavoshian1,3, and Azadeh Yadollahi1,3 

 1Institute of Biomedical Engineering – University of Toronto, Toronto, Ontario, Canada 
2Advanced Diagnostics, Toronto General Hospital Research Institute– University Health Network, Toronto, Ontario, Canada 

3KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, Ontario, Canada 

 
Abstract—Cardiopulmonary coupling (CPC) analysis is a non-

invasive technique increasingly used to evaluate the autonomic 

nervous system's control over heart and respiratory functions, 

particularly during sleep. This review delves into current methods 

of CPC analysis, including the preprocessing of electrocardiogram 

(ECG) signals, extraction of meaningful measures, and features, 

and the use of machine-learning classification for sleep-related 

diseases. The review also examines different patient cohorts in the 

existing literature and the efficiency and accuracy of automated 

sleep apnea detection, highlighting the limitations and potential of 

these methodologies in clinical settings. 

 
Keywords— Sleep apnea, Cardiopulmonary Coupling, 

Electrocardiography (ECG), ECG/PPG-derived respiration, 

Fourier Transform. 

I. INTRODUCTION  

As the scientific understanding of sleep deepens, innovative 

technologies have emerged to unravel the complexities of sleep 

disorders, among which sleep apnea (SA) stands out as a 

significant concern [1]. Detection of SA through a full-night 

polysomnography is expensive, labor-intensive, and time-

consuming [2-3]. An alternate promising tool - 

Cardiopulmonary Coupling (CPC) analysis, offers unique 

insights into the dynamic interplay between cardiac and 

respiratory systems during sleep [1,4-5]. CPC uses an 

electrocardiogram (ECG) or photoplethysmography input to 

derive ECG/photoplethysmography -derived respiration (EDR) 

signals and the normal-to-normal sinus (N-N) interval [1,6]. 

From frequency-domain to time-domain analyses, there are 

various approaches utilized to extract meaningful information 

from the complex physiological signals in CPC analysis [7]. 

Understanding these analytical methods is crucial as it lays the 

foundation for accurate interpretation and application of CPC 

data in the clinical setting. Here we aim to explore existing 

methods of CPC analysis including preprocessing, feature 

extraction, and machine-learning classification. This review 

also aims identify any population bias that may impact the 

biological conclusions presented and the application of 

artificial intelligence for automated SA detection.  

II. METHODS 

We initially searched for CPC analysis on Google Scholar; 

the search was sequentially narrowed using SA and transform-

related keysearch words (listed below). A similar approach was 

applied to PubMed and Web of Science. Duplicates were 

removed using reference manager software. Reviews and web-

unavailable papers were excluded. The search was refined to 

include keywords specific to ECG-based diagnostic systems, 

signal processing, time-domain analyses, frequency-domain 

analyses, and/or machine-learning classifications of SA. Titles 

and abstracts were scanned for descriptions of CPC 

methodologies. The main text of selected papers was screened 

to ensure a sufficient description of the methodology. We 

selected papers applying transforms for SA detection, 

classification, or comparison to traditional diagnostic methods. 

Keywords: (“sleep apnea” OR “sleep-disordered breathing” 

OR “obstructive sleep apnea” OR “central sleep apnea” OR 

“hypopnea” OR “apnea” OR “apnea-hypopnea index”) AND 

(“electrocardiography” OR “heart rate variability” ) AND 

(“signal processing” OR “signal filtering” OR “time-domain 

analysis” OR “frequency-domain analysis” OR “threshold-

based algorithms” OR “Fourier-transform” OR 

“synchrosqueezing transform” OR “continuous wavelet 

transform”, “short-time Fourier transform”, “Hilbert–Huang 

transform” OR  “machine learning”)  

III. RESULTS 

There were 66,400 search results for CPC analysis in total. 

The majority of the papers published used the Fourier 

Transform (FT) - based CPC analysis technique; however, 

other transforms have been utilized to address some of the 

shortcomings of the traditional FT (Table 1).  
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Table 1: List of papers using various CPC analyses. 

Paper  CPC Method Purpose/Objective Results 

Thomas et 
al. (2005) 

[4] 

Fourier 
transform (FT) 

Assessing a novel 
approach for CPC  

Highly aligns 
with CAP states  

Thomas et 

al. (2007) 

[8] 

Fast-Fourier 

transform (FFT) 
Distinguishing 

obstructive, central 

or complex SA. 

Effectively 

differentiates 

SA types. 

Quiceno-

Manrique et 
al. (2009) 

[10] 

Short-time 

Fourier 
transform 

(STFT) 

Apply time-

frequency analysis 
for OSA detection. 

92.67% 

accuracy on 
per-minute 

base. 

Guo et al. 

(2011) [9] 
Fast-Fourier 

transform (FFT) 
Assess CPC 

method in pediatric 

SDB. 

Highly 

correlates with 

respiratory 
abnormality in 

pediatric SDB. 

Liu et al. 

(2012) [11] 
Hilbert–Huang 

transform (HHT) 
HHT-CPC analysis 

to detect severity 

of SDB 

Finer temporal 

and frequency 

resolutions. 

Lin et al. 

(2021) [12] 
Continuous 

Wavelet 
transform 

(CWT) 

Automate SA 

classification 
system  

High resolution 

in two windows 
for different 

frequency 

bands. 

Wang et al. 

(2023) [14] 
Synchrosqueezin

g Transform 
Algorithm (SST) 

Refine CPC 

measurements with 
SST. 

83%  accuracy 

per-minute 
base. 

 
A. Fourier Transform 

FT, a key tool in signal processing, breaks down signals into 

their frequency components [8]. The original CPC analysis 

algorithm by Thomas et al. (2005) is based on FT, assessing 

sleep using automated CPC measures. The algorithm, trained 

on the American Academy of Sleep Medicine-accredited Sleep 

Disorders Center, consisted of 70 polysomnograms [4]. 

Following QRS algorithm-based R-R interval and EDR 

extraction, signals were decomposed into sinusoidal 

oscillations [4]. Coherence was calculated for synchronized 

oscillations and cross-spectral power was calculated for 

coupled signals, at a given frequency [4]. 2 Hz resampling with 

cubic spline interpolation maintained signal consistency [4]. 

Cross-spectral power and coherence were computed for three 

overlapping 512-sample sub-windows over a 1024-sample 

window (~8.5 minutes) advanced by 256 samples (~2.1 

minutes) for subsequent analyses [4]. The training set 

comprised 20 males and 15 females (average age: 46 ± 12, 

BMI: 28 ± 4 kg/m2), and the test set had 28 males and 7 females 

(average age: 49 ± 18, BMI: 31 ± 5 kg/m2) [4].  

Following the methodology of [4], Thomas et al. (2007) 

targeted detection of elevated-low-frequency coupling patterns, 

indicative of apneas and hypopneas [8]. Training dataset 

included 70 polysomnograms from the PhysioNet Sleep Apnea 

Database (males and females aged 27 to 63) [8]. Sleep Heart 

Health Study-I contributed 3989 polysomnograms and 

PhysioNet BIDMC Congestive Heart Failure Database added 

15 subjects with severe congestive heart failure for further 

algorithm training [8]. 

Guo et al. (2011) utilized FFT-based CPC analysis to assess 

correlation of CPC metrics with nasal-pressure based apnea-

hypopnea scoring [9]. Following the methodology of [4], they 

substituted an automated beat detection algorithm for the QRS 

algorithm [9]. In the group with mean nasal-flow respiratory 

disturbance index of 36.1/h, CPC correctly diagnosed 40% of 

individuals in the non-severe group, and 94.3% in the severe 

group [9]. The sample population included 63 participants (2-

12 years) [9]. The weight, BMI, and sex of participants were 

not reported [9].  
Quiceno-Manrique et al. (2009) utilized Short Time Fourier 

Transform (STFT) for time-frequency analysis of heart rate 

variability signals in ECG recordings to detect obstructive sleep 

apnea (OSA) [10]. Following QRS detection, time-frequency 

analysis was conducted using Cohen's class of quadratic 

distributions [10]. To smooth out artifacts, window functions 

were applied and Linear Frequency Cepstral Coefficients were 

used for additional signal processing [10]. Dynamic features 

were analyzed using a k-nearest neighbor classifier combined 

with principal component analysis, enabling differentiation 

between normal and pathological ECG signals [10]. The 

sample population was not described, however, the database 

consists of 35 recordings [10].  
 
B. Hilbert-Huang Transform  

The Hilbert-Huang Transform (HHT) is an adaptive 

method used to analyze non-linear and non-stationary time 

series data [11]. Unlike FT, which assumes linearity and 

stationarity, HHT employs Empirical Mode Decomposition to 

decompose complex data sets into a finite number of intrinsic 

mode functions, capturing natural oscillation mode [11]. 

Hilbert spectral analysis provides time-frequency data for each 

intrinsic mode function, enhancing SA detection and severity 

assessment using ECG data. Liu et al. (2012) used this method 

by resampling R-R intervals and EDR at 2 Hz and decomposing 

them into intrinsic mode functions. The resulting HHT-CPC 

sleep spectrum, analyzed for power and coherence, provides 

high resolution. This study validated statistically and 

demonstrated HHT's superiority over traditional FT-based 

methods in analyzing sleep architecture and determining SA 

severity. The sample population comprised 69 subjects from 

PhysioNet clinical database (aged 27 to 63; 56 males and 13 

females) [11]. 
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C. Continuous Wavelet Transform 

Continuous Wavelet Transform (CWT) analyzes time and 

frequency details of ECG signals simultaneously, allowing for 

the detection of variable and transient characteristics of SA 

[12]. Lin et al. (2021) integrated machine learning and a bag-

of-features technique [12]. The algorithm tested different 

spectrogram window times (10 and 60 seconds) and frequency 

bands (0.1–50 Hz, 8–50 Hz, 0.8–10 Hz, and 0–0.8 Hz) 

demonstrating high classification accuracy and temporal 

resolution [12]. The sample population consisted of 33 

participants with varying degrees of SA severity [12]. 
Li et al. (2023) integrated CWT into the standard CPC 

algorithm to evaluate age-related differences in sleep signals, 

offering refined time-frequency resolutions for understanding 

sleep patterns [13]. Both respiratory and RR signals were 

uniformly interpolated to 8 Hz [13]. The Morlet wavelet was 

chosen for its effectiveness in analyzing the time-frequency 

characteristics of the signals with symmetric padding to address 

boundary effects [13]. The sample population included a 

younger cohort (aged 21 to 34 years), and an elderly cohort (68 

to 81 years), with an equal number of healthy males and 

females [13]. 
 

D. Synchrosqueezing Transform 

Synchrosqueezing Transform-Coupled Cardiopulmonary 

(SST-CPC) analysis outperforms traditional FT-based methods 

for per-minute sleep-disordered breathing (SDB) detection 

[14]. SST-CPC offers enhanced temporal and frequency 

resolution without relying on stationary signal assumptions 

[14]. Wang et al. (2023) preprocessed ECG signals with 

bandpass and Savitzky-Golay filters, Pan-Tompkins algorithm 

for R-peaks detection and resampled at 4 Hz [14]. Applying 

CWT to RR intervals and EDR, they used a phase transform for 

instantaneous frequencies and the SST algorithm enhanced the 

time-varying frequency representation [14]. The resulting SST 

spectrogram facilitated feature extraction, aiding in the 

classification of physiological events, and enhancing ML 

algorithm-based SA detection [14]. Wang et al. (2023) utilized 

the PhysioNet Apnea dataset, consisting of individuals across 

various ages and severities of SA [14]. 

IV. DISCUSSION 

This review explores existing methods in CPC analysis 

including preprocessing, feature extraction, and ML 

classification. The traditional method, used by [4] detects peak 

points, however, the 8-minute time window may blur rapid 

state alterations [4]. Many studies since have adopted a similar 

methodology. Thomas et al. (2007) found a strong correlation 

between the algorithm's detection of elevated LFC and human 

scoring of apneas and hypopneas, with limitations including the 

need for further validation of the algorithm's ability to classify 

hypopneas accurately [8]. The presence of narrow spectral 

band elevated-low-frequency coupling emerged as a predictive 

factor for the induction of complex SA during positive airway 

pressure titration [8]. Guo et al. (2011) reported limitations in 

the method's non-specificity and its focus on severe cases of 

SDB [9]. Quiceno-Manrique et al. (2009) achieved comparable 

accuracy, with enhanced time-frequency resolution [10]. The 

method's accuracy was comparable only when tested with the 

best-selected observations, suggesting a possible reduction in 

performance with less ideal data sets [10]. In another study, 

researchers used STFT to extract meaningful features from 

time-varying signals, achieving 96.9% sensitivity and 97.1% 

specificity in fall detection [15]. 
The FT presupposes a stationary signal, often resulting in 

unsatisfactory frequency and time resolution [4]. CWT 

effectively manages irregularities in ECG signals, providing 

high time and frequency resolution for accurate SA 

identification [12]. CWT's compatibility with machine-

learning algorithms enhances precision of the classification 

process [12]. Another study using CWT for dynamic 

cardiorespiratory coupling and aging highlighted a reduction in 

coupling strength and altered dynamics in the elderly, 

suggesting age-related changes in heart-respiration interactions 

[13]. Both papers emphasize the detection of arrhythmias, with 

the former focusing on SA detection and the latter on aging [12-

13]. Lin et al. (2021) significantly advanced sleep medicine by 

developing a highly accurate algorithm for detecting SA [12]. 

However, a small sample size and insufficient physiological 

data restricted deeper analysis [12]. Furthermore, the algorithm 

was not suitable for patients with irregular ECGs (i.e. 

cardiovascular complications) [12]. A larger dataset, more 

comprehensive patient information, and a refined algorithm 

will broaden applicability, allowing distinction between SA 

and cardiovascular conditions [12]. Li et al. (2023) found 

higher heart rate variability indicators in younger participants, 

suggesting better parasympathetic nervous system function, 

evident in the LFC/High-Frequency Coupling ratio; however 

further research is needed to understand these dynamics fully 

[13]. 
Using HHT, Liu et al. (2012) achieved enhanced temporal 

and frequency resolution over FT-based techniques [11]. Their 

analysis, focused on LFC components, shows a strong negative 

correlation with AHI, suggesting potential for severity 

differentiation and treatment assessment [11]. However, this 

study focuses heavily on LFC components, overlooking High 

Frequency Coupling, which may occur in obstructive 

hypoventilation [11]. In another study, the researchers 

demonstrated HHT's ability to handle non-linear and non-

stationary data, offering enhanced accuracy and efficiency of 

various Structural Health Monitoring scenarios [16]. 
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Wang et al. (2023) addressed the limitations of FT-CPC and 

improved upon the Wavelet transform-based CPC algorithm 

[14]. The study, nonetheless, classifies an epoch as an "apnea 

minute"; this lacks distinction between SA phenotypes [14]. 

Despite limitations, SST-CPC notably enhanced SA detection 

accuracy to 83%, showing promise as an effective tool for 

augmenting traditional SA diagnostics [14]. 
This review also aims to explore existing literature to 

identify population bias that may impact the biological 

conclusions presented. The datasets used in these studies did 

not have a balanced male: female ratio. Balanced datasets or 

weighing techniques are important to extract the most accurate 

conclusions for automated SA detection [17].  

V. CONCLUSION 

Our review presents a thorough analysis of current 

methodologies in CPC for SA detection. By examining an array 

of advanced signal processing techniques, we delve into the 

intricacies of how these algorithms interpret the interplay 

between cardiac and respiratory patterns during sleep. Each 

method brings its own set of challenges, including the need for 

larger, balanced datasets, and the risk of bias that may influence 

the generalizability of findings. Despite these hurdles, the 

reviewed CPC analysis techniques represent a promising 

frontier in sleep medicine, laying the groundwork for more 

nuanced and accessible SA diagnostics. 
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