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Abstract— Most large-scale pre-trained image models are
not designed with segmentation or medical imaging in mind.
Hence, practitioners often use specialized augmentation tech-
niques such as CarveMix and denoising pretraining objectives
to initialize and train their models. However, these method-
ologies may misappropriate model resources for learning task-
irrelevant information as they do not incorporate label informa-
tion. We propose Label Aware Denoising Pretraining (LADP), a
deep learning model pretraining technique for hypoxic-ischemic
encephalopathy lesion segmentation, which causes severe motor
and cognitive disability and high mortality in neonates. LADP
uses the region-of-interest extraction method from CarveMix to
impart increasing levels of noise to regions surrounding lesion
contours. In this way, models efficiently learn better representa-
tions for a few key areas most relevant to the downstream task.

Keywords— Segmentation, Hypoxic-ischemic Encephalopa-
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I. INTRODUCTION

Hypoxic-ischemic encephalopathy (HIE) is the fifth lead-
ing cause of worldwide deaths of children according to the
World Health Organization [1]. HIE results in a brain injury
in neonates and occurs in approximately 1 - 5 per 1000 births
[2,13]]. Neonates diagnoses with mild HIE are four times more
likely to develop either cerebral palsy, epilepsy, mental re-
tardation, or die before the age of six [4]. In severe cases,
93% of neonates report multiple organ failures [5], and about
22% die due to bleeding complications [6]]. The diagnosis and
prognosis of HIE is a multi-factorial process that most often
involves neuroimaging [[7]. In particular, neuroimaging with
magnetic resonance imaging (MRI) has the most prognostic
importance as it allows for accurate detection of lesions re-
lated to HIE [8]. MRIs are used in studies to predict long-term
outcomes, identify common patterns, and inform treatment
decisions in practice [9]. Hence, strong prediction and seg-
mentation tools for detecting hypoxic-ischemic lesions may
help further the understanding of the associated neurological
factors, assist in prognosis, and ultimately help guide patient
care.

As surveyed by [10], many automated segmentation tech-
niques developed for isolating brain lesions in MRI using

deep learning have been proposed over the last few years.
Indeed, many of these proposed techniques often incorpo-
rate two components: pre-training and transfer-learning [11]].
These methods can significantly improve sample efficiency,
benefiting the training of deep learning models that typically
require thousands of samples for good performance. Self-
pretraining [[12] is a recently proposed transfer-learning tech-
nique where models are pre-trained directly on the down-
stream task data. Models pre-trained exclusively for Ima-
geNet classification [[13]], the most popular transfer-learning
technique, often suffer from a degradation in performance
segmentation tasks [[14]. Given the low incidence rate of the
disease, the size of datasets and the statistical power of MRI
studies of HIE is limited. Hence, we use self-pretraining to
initialize our models.

Recently, [15] demonstrated that self-pretraining using the
denoising pretraining objective (without ImageNet pretrain-
ing) can outperform their ImageNet pre-trained counterparts
in several image segmentation tasks. The denoising pretrain-
ing objective, which has its roots in denoising auto-encoders
[L6], typically trains deep learning segmentation models to
predict the uncorrupted version of a noisy image. Inspired
by [[15], we will explore the denoising pretraining procedures
in the HIE segmentation setting. In particular, we consider
the recently proposed Decoder Denoising Pretraining (DDP)
[L7] a state-of-the-art denoising framework for improving
segmentation performance.

Our goal in is paper is to demonstrate that incorporating
label information during a denoising (self-)pretraining can
further enrich learned representations with task-relevant in-
formation and improve results. In broad terms, we use the
region-of-interest extraction method from the popular aug-
mentation technique CarveMix [18]]. In this way, models can
focus resources to learn stronger representations only in a few
key areas that are the most relevant to the downstream task.

II. METHODS

A. Dataset

To evaluate our method, we use the dataset provided for the
Ist Boston Neonatal Brain Injury Dataset for Hypoxic Is-
chemic Encephalopathy (BONBID-HIE) Lesion Segmenta-
tion Challenge [19]. The dataset provides 133 expertly anno-
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tated annotations of brain lesions in MRI scans of neonates
born between 2001 and 2018. The scans are provided in 3D
apparent diffusion coefficient (ADC) maps in addition to a
newly developed Z4pc, which normalizes the voxels ADC
maps relative to the maps of healthy neonates. In this paper,
we will use the publicly available training split (85 volumes)
converted into 2D images to train and evaluate our models.

B. Pre-processing

Given a skull-stripped ADC map x5, € R"" and a Z4pc map
x, € R we perform Z-score normalization [20] to nor-
malise the pixel values where the background values are as-
signed a constant value of -6. The resulting two normalised
maps Zgs and zgs are concatenated together to create the initial
input image x € R>*"*¥_ Finally, each image is upscaled to
256 x 256 pixels before being fed to the model.

C. Methodology

Our goal is for the model to develop stronger representations
of regions of interest during the pretraining phase. Following
the recent derivations for diffusion using non-isotropic Gaus-
sian noise [21]], our framework modifies DDP by noising the
vector inputs x using

X =1+ /1= 1/I(04,0p|c)e 1)

where € ~ A4(0,I) and I(o,, 0p|c) is a diagonal matrix
whose diagonal elements are the standard deviations of the
independent noise applied to each pixel. The diagonal ele-
ments of I(c,,0p|c) are o, for pixels within a region of in-
terest ¢ (e.g. labeld areas) and o}, otherwise. Our image nois-
ing scheme equates to adding noise to pixels sampled from
(0, 0,) for the regions of interest and .4#(0, 0p) in the re-
maining regions.

Consistent with [[18]], we take the ROI ¢ to be the annotated
areas with brain lesions including areas adjacent to lesion
contours. Following CarveMix, given an annotation y € R**"
we define an indicator map for the region of interest for an
image as

_J1 D(fy)<A
%(y)— {0 otherwise @

where D(-|y) is the distance between a pixel and the contour
of the annotated area. Notably, D(-|y) is negative for anno-
tated pixels within a lesion. CarveMix stochastically samples

A from
) ®

,0)+1U(0,

1 1
A~ EU(— E‘D('b’)min )

D("y)min

where D(:|y)min = min, D(x|y) is an indication of lesion size
for a given annotation y.

In practice, we first obtain a random matrix ij € R2xhxw
before merging it with the image. Where we have

“)

Yo JV(O, O'az) lf(g(y)u =1
kij A (0,07) otherwise.
Using this construction, we can add in the noise pixel-wise
so that given an image x € R>*/*" we can apply the noising
transform

X = Vx4 1-yW* )

Consistent with DDP, the model is trained to predict the
noise W” using the L2 loss. Altogether, given a U-net [22]]
segmentation model with encoder fy and decoder gy, we self-
pretrain the parameters using the loss

2
EEw g0 (fo(vx+VI=yW) - W[ . (©)

Similar to DDP we set ¥ = 0.95 and based on experiments we
fix 0, = 1.5 and o, = 0.8.

D. Training & Testing

Our algorithm uses TernausNet [23] a UNet classifier that is
self-pretrained using the denoising procedure outlined in Sec-
tion [(.Subsequently, the model is fine-tuned to predict seg-
mentation labels using the following weighted segmentation
loss:

Li(p,y) = Lece(p,y) + Lpice (P, Y) + 3Lrocal (p,y) (1)

where Lpcg,Lpice, and Lpocy are the binary cross-entropy,
dice, and Focal loss [24] respectively. Each model is trained
until saturation on a validation set, where we only use the
dice metric to measure performance.

During the self-pretraining and fine-tuning phases, we
apply a simple augmentation where images are randomly
flipped horizontally and vertically. Other augmentation
strategies typically reduce performance. For both phases, the
model is optimized using the Adam with a learning rate of
0.0001 for 30 epochs with a batch size of 16.

To create a prediction on a test image we use a test-time
augmentation strategy. First, we aggregate the model outputs
created by first applying the various flip transforms seen dur-
ing training. We then average the outputs to create the final
segmentation. The submitted algorithm is a voxel-wise voting
ensemble [25] of eight identical models, each self-pretrained
using LADP.
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E. Evaluation metrics

We evaluate our method using the DICE overlap [26]] eval-
uated with lesions occupying < 1%, 1% ~ 5%, and > 5%
of brain volume. Additionally, we will measure surface dis-
tance metrics to evaluate the similarity between the surface
contours of the predicted and ground truth segmentations.
Namely, the Mean Average Surface Distance (MASD) and
the Normalized Surface Dice (NSD) [27]]. Similar to the
BONBID-HIE challenge’s ranking policy, we rank models
based on the model’s ranking on each metric.

III. RESULTS

A. Cross-Validation

Table [[] outlines the results of our 5-fold cross-validation ex-
periments. Indeed, LADP has superior performance on met-
rics measured across all validation samples. However, our
method is marginally worse than the best methods when eval-
uated only on brain volumes with lesions occupying < 1%,
1% ~ 5%, or > 5% of brain volume. Similar to DDP[17],
freezing the encoder parameters (6 in Eq.[6)) during the pre-
training phase provides the best results.

B. Ablation

We conducted an ablation study to assess the individual im-
pact of each of our design choices, where we averaged the re-
sults using two experiments using 90% of the public data for
training and the remainder for testing. Using TernausNet [23]
as the baseline, the results in Table 2] show that our flip aug-
mentation strategy during training yields the most substantial
relative improvement. In contrast, LADP confers a slight ad-
vantage (+0.6 dice points) when tracing performance across
all validation samples, however, the improvement is twice as
large (1.4 dice points) for brain volumes with lesions occu-
pying < 1% of total volume. This suggests that the denoising
objective is more effective for learning the segmentation of
smaller structures.

C. Overall-Performance

Based on mean rank, our method placed 27 o5 the hidden
test set for the BONBID-HIE lesion segmentation challenge.
Similar to our cross-validation results, our method yields the
best dice results when measured across all test samples but
produces slightly worse but competitive results when evalu-
ated on volumes with lesioned areas occupying only a small
percentage.

IV. CONCLUSION 3

We have proposed LADP, a denoising pretraining framework
for HIE lesion segmentation with the goal of training mod-
els with a strong representation in a few key areas relevant to
the downstream task. At its core, LADP uses the segmenta-
tion labels and the region-of-interest extraction method from
CarveMix in a denoising self-pretraining framework. In our
experiments, LADA has superior results relative to state-of-
the-art techniques when averaging across all test samples.
Additionally, we suggested that the improvement is largely
explained by the relatively improved performance on vol-
umes with lesioned areas occupying less than one percent. We
validated our methods using the 1st Boston Neonatal Brain
Injury Dataset for Hypoxic Ischemic Encephalopathy Lesion
Segmentation Challenge in which our final algorithim placed
27 overall.
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