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Abstract— This study delves into the statistical significance of
spectral characteristics of snoring vibrations in the prediction of
the efficacy of oral appliance devices in the treatment of obstruc-
tive sleep apnea. By analyzing data from 20 participants who
underwent at-home sleep apnea testing both before and after
a 5-month utilization of mandibular advancement devices, we
established that specific distribution-based descriptive spectral
features can predict the efficacy of oral appliances. Our analysis
revealed that among 20 highly correlated features from an initial
set of 192 features, only two features are significantly different be-
tween the group of responders and non-responders. Using these
two features and a linear regression model, a predictive accuracy
of 75%, coupled with a sensitivity of 67% and specificity of 82%
was achieved. Our findings are also aligned with previous clinical
outcomes on the snoring sounds, which share a lot of similarities
with the snoring vibration signals.
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I. INTRODUCTION

Obstructive sleep apnea (OSA) is characterized by frequent
interruptions in breathing during sleep [1], with its prevalence
estimated to range between 9 and 38% in the general adult
population [2].

Elevated occurrences of OSA (ranging from 30 to 70%)
are notably linked to advanced age (above 50 years), as well
as conditions such as lung disease, heart disease, diabetes,
substance use, and smoking [1]. Additionally, OSA shows
strong associations with obesity and abnormalities in the upper
airway.

Various treatment modalities have been proposed for OSA,
encompassing behavioral interventions, surgical procedures,
and medical devices. Among these, recent advancements in
medical devices have exhibited a notable balance between
efficacy and adherence. Medical devices primarily fall into
two categories: positive airway pressure (PAP) devices and
oral appliances [3, 4].

PAP devices function by delivering continuous or intermit-
tent positive air pressure via a nasal or oral mask, effectively

keeping the upper airways open during sleep. In contrast, oral
appliances are customized devices designed to reposition the
jaw or tongue, thereby preventing airway obstruction. While
PAP devices have demonstrated higher efficacy rates (around
75% vs. 50% for oral appliances), patient adherence to oral
appliances is higher (around 75% vs. 50% for PAP). Conse-
quently, sleep physicians lean toward prescribing oral appli-
ances; however, a significant barrier is the adjustment period
required, typically lasting between 3 to 6 months, coupled
with the cost of the device. As a result, physicians typically
recommend oral appliances only when confident about the
effectiveness of the treatment on the patient.

Numerous studies have illustrated that assessing upper air-
way collapsibility using various methods, such as multisensor-
catheter awake nasendoscopy [5], drug-induced sleep en-
doscopy (DISE) [6], and craniofacial cephalometry [7, 8], can
predict the response to oral appliance treatment with an ac-
curacy ranging between 70% and 75%. Additionally, Vena et
al. [9] introduced a polysomnography-based approach achiev-
ing a predictive efficacy of 77%. However, these techniques,
while effective, disrupt normal sleep breathing patterns and
necessitate specialized expertise.

Our recent research [10] demonstrated that employing time-
frequency analysis of snoring vibrations and incorporating
numerous acoustical features allowed prediction of efficacy
with an accuracy of 88%. Nonetheless, the rationale behind
the selection of these features and their interpretation remains
unclear. Hence, the primary objective of this study is to as-
sess the statistical significance of features employed in prior
predictive models and ascertain the model’s ability to predict
treatment outcomes using spectrally significant features in a
statistically robust manner.

II. MATERIALS AND METHODS

A. Data acquisition

This study enrolled individuals referred to the Dental Sleep
Apnea Clinic at the Faculty of Dentistry, University of British
Columbia for oral appliance therapy. Participants underwent
both baseline and follow-up sleep studies after five months
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of oral appliance use using a level-III portable home sleep
apnea test device. This device captured physiological sig-
nals, including nasal airflow measured via a nasal cannula
connected to a pressure transducer, thoracic and abdominal
movements recorded through respiratory impedance plethys-
mography, and oxygen saturation levels monitored using pulse
oximetry (SpO2). The device also detected snore flow vibra-
tions with a high-pass filter on the nasal pressure signal and
captured snore flow audio through a forehead-connected mi-
crophone. Additionally, heart rate and body position were
monitored.

Apnea was defined as the cessation of airflow lasting 10
seconds or more, and hypopnea as a 50% or greater reduction
in airflow for at least 10 seconds, accompanied by a drop in
SpO2 of 3% or more. Snoring signals were sampled at 125
Hz and snoring segments were identified based on a 70%
intensity threshold and verified audibly by a qualified sleep
technician later. Participants were categorized as responders
if their Apnea-Hypopnea Index (AHI), defined as the average
number of apneas and hypopneas per hours of sleep after treat-
ment (AHIpost-titration) was below 10 events per hour of sleep
and displayed a minimum 50% reduction in AHI compared to
their baseline (AHIbaseline).

B. Feature extraction

In prior work, we demonstrated the predictive capacity of
spectral features in treatment success [10]. Building on this,
our current study employs analogous methodology to extract
spectral features. These include Mel-frequency cepstrum coef-
ficients (MFCCs) alongside their first and second derivatives,
chroma features, and spectral attributes such as spectral con-
trast, median of spectral centroid, bandwidth, flatness, and
roll-off.

Furthermore, our analysis encompasses six band power lev-
els and power spectral density (PSD) attributes like mean PSD,
root-mean-square of PSD, skewness, range, and different sum-
mation moving average (DSMA) of PSD. The extraction of
spectral features involved a 25-sample Hann window (200 mil-
liseconds), with Nfft set to 2048. Additionally, bandpower fea-
tures underwent normalization based on the segment’s power
within the 0.1 to 60 Hz range.

Given the inconsistent number of snoring segments across
participants, we adopted an approach utilizing low-level de-
scriptors—mean, variance, kurtosis, and skewness—to repre-
sent each feature across all snoring segments per participant.
This methodology expanded the initial 73 features to a total of
292 features for each participant’s data. The feature extraction
was applied consistently across all participants, resulting in
the feature matrix.
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Fig. 1: The proposed study pipeline.

C. Feature preparation

After achieving the feature matrix, invalid features (designated
as ’not a number’ (NAN) values) were systematically removed,
resulting in 192 remaining features. To refine feature selection,
we employed the Searching for Uncorrelated List of Variables
(SULOV) method [11], utilizing a correlation threshold of 0.6
to eliminate less significant features.

The feature matrix underwent random division, allocating
70% of the data to a training dataset for the application of the
feature selection algorithm. This process was iterated 30 times,
involving randomly shuffled combinations of participant data,
and features that were selected at least 10 times out of the 30
repetitions were subsequently chosen for further analyses.

D. Statistical analyses and inference

In line with the primary objective of this study, our methodol-
ogy proceeded as follows: initially, we employed the Wilcoxon
statistical test to assess the normality of each feature’s distribu-
tion within each group. Subsequently, if the data demonstrated
normal distribution in both groups, we proceeded to employ
the unpaired Student t-test to investigate differences between
the two groups. Conversely, if the data did not exhibit nor-
mal distribution in both groups, we opted for the Welch t-test
for the same purpose. Afterwards, significant features were
identified for the subsequent stage of model development.

In the model development phase, we employed a linear
regression model to predict treatment response, defined as 0
for non-responders and 1 for responders. As the linear model’s
output is not necessarily binary, a threshold of 0.5 was used
to categorize individuals with a predicted output of ≥ 0.5 as
responders and those with < 0.5 as non-responders. Subse-
quently, we computed the confusion matrix and determined
the accuracy, sensitivity, and specificity metrics. Moreover,
for all statistical analyses in this study, a significance level
(p-value) of 0.05 was adopted. The summary of this study is
illustrated in Fig. 1.
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3III. RESULTS

This study comprised 20 individuals. More information about
the participants’ demographics can also be found in Table 1.
Figure 2 also presents a scatter plot depicting the relationship
between baseline and post-treatment AHI for both responders
and non-responders. The feature reduction stage resulted in

Effective Treatment RegionEffective Treatment Region

Fig. 2: Scatterplot of AHI with the region of effective treatment highlighted
in green shading. The diagonal blue dashed line represents a 50% reduction
post-titration, while the horizontal pink dashed line indicates an AHI of 10
events per hour after titration. Points are differentiated by sex using distinct

shapes, while treatment success is indicated by different colours.

the selection of only 21 features, encompassing all the fea-
tures detailed in typewriter font within Table 1, along with
AHIbaseline. Features represented in typewriter font follow the
format of “X Y Z,” where “X” denotes the feature category
(e.g., MFCC, chroma, spectral), “Y” indicates the feature’s
coefficient number or spectral characteristic (e.g., roll-off, con-
trast, bandwidth), and “Z” represents the utilized low-level de-
scriptors such as kurtosis (“kurt”), skewness (“skew”), mean,
and variance (“var”).

However, among these features, only two features, namely
bandPow30 40 kurt and mfcc 10 kurt, denoting the
kurtosis of the band power between 30 to 40 Hz and the 10th

coefficient of the MFCC, displayed significant differences
between the two groups, showcasing p-values of 0.006 and
0.031, respectively.

The linear model was constructed using
bandPow30 40 kurt and mfcc 10 kurt, as de-
tailed in Table 2, yielding an overall p-value of 0.007 and an
R2 value of 0.44. The performance of the predictive model is
visually represented in Fig. 3, exhibiting an accuracy of 0.75,
sensitivity of 0.67, and specificity of 0.82. Also, from Table 2,
it can be inferred that the bandPow30 40 kurt feature is
more significant when it comes to the prediction. This simple
yet statistically meaningful predictive model, namely the

Table 1: Summary of the demographics and incorporated features in the
analyses. The columns corresponding to significantly different features are

bolded.

Parameter Overall (n = 20) Not Responder (n = 11) Responder (n = 9) p-value
Sex, Female 10 3 7 -
Age (years) 56 [49,56.25] 52.0 [50,56] 56 [49,57] 0.798
AHIbaseline 8.55 [4.20,14.70] 6.4 [4.7,8.9] 10.4[4.1,24.5] 0.127

AHIpost-titration 5.35 [1.93,11.78] 2.2 [1.7,4.3] 10.9 [6.3,16.2] 0.006
bandPow0.1 10 kurt 25.3 [15.65,38.93] 38.27 [22.23,47.03] 21.1 [12.76,29.71] 0.08
bandPow20 30 kurt 1.88 [1.02,3.23] 1.5 [0.36,3.2] 2.7 [1.62,3.18] 0.331
bandPow30 40 kurt 4.45 [2.85,6.38] 6.27 [4.15,9.02] 3 [1.28,4.88] 0.006
bandPow50 60 var 23.01 [13.83,30.85] 29.94 [19.35,31.22] 14.84 [12.72,28.24] 0.089
chroma5 mean 0.48 [0.45,0.49] 0.47 [0.47,0.49] 0.48 [0.45,0.49] 0.776
mfcc 10 kurt 0.66 [0.23,0.9] 0.23 [0.16,0.81] 0.84 [0.51,1.08] 0.031
mfcc 12 kurt 1.1 [0.79,1.68] 0.81 [0.58,1.78] 1.16 [0.92,1.65] 0.97
mfcc 2 skew -0.09 [-0.19,0.02] -0.08 [-0.28,-0.01] -0.11 [-0.16,0.05] 0.619
mfcc 3 skew 0.09 [-0.07,0.32] 0.2 [-0.09,0.32] 0.08 [-0.04,0.29] 0.82
mfcc 4 kurt 0.51 [0.28,0.57] 0.53 [0.21,0.6] 0.5 [0.43,0.55] 0.457
mfcc 6 kurt 0.7 [0.26,0.81] 0.71 [0.6,0.79] 0.52 [0.21,0.8] 0.295
mfcc 7 skew 0.01 [-0.02,0.17] 0 [-0.01,0.09] 0.01 [-0.05,0.21] 0.882
mfcc 9 kurt 0.36 [0.11,1.03] 0.21 [0.08,0.55] 0.71 [0.21,1.14] 0.224
mfcc 9 skew 0.03 [-0.11,0.24] 0.04 [-0.1,0.22] -0.02 [-0.1,0.25] 0.961

spec contrast2 kurt 1.31 [1.1,1.91] 1.3 [1.07,1.8] 1.33 [1.12,1.93] 0.946
spec contrast3 kurt 0.41 [0.09,0.58] 0.44 [0.39,0.65] 0.23 [-0.05,0.52] 0.373
spec contrast3 mean 7.42 [7.23,7.74] 7.38 [7.15,7.78] 7.46 [7.26,7.69] 0.875
spec contrast4 kurt -0.26 [-0.45,-0.18] -0.28 [-0.4,-0.24] -0.23 [-0.48,-0.15] 0.932
spec contrast4 var 14.67 [13.92,15.13] 14.25 [13.79,15.43] 14.67 [14.3,15.03] 0.851
spec rolloff kurt 0.95 [0.46,1.9] 0.67 [0.29,1.85] 1.57 [0.83,1.93] 0.561

following equation, demonstrates acceptable performance:

TreatmentSuccess ∼ (−0.34×mfcc 10 kurt

+ 0.07×bandPow30 40 kurt+0.29)≥ 0.5
(1)

Table 2: The summary of the fitted linear regression model, where significant
independent variables is shown in bold fonts.

Independent Var. Coefficient p-value
mfcc 10 kurt -0.34 0.115

bandPow30 40 kurt 0.07 0.023
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Fig. 3: Performance of the predictive model in a) confusion matrix, and b)
the pair-wise illustration of the selected features and their corresponding

predicted label (shown in two different colors) and their actual values
(decoded in distinct shapes).

IV. DISCUSSION
The primary objective of this study was to delve deeper into
spectral analyses of snoring vibrations as a potential tool for
predicting and distinguishing between responders and non-
responders to oral appliance therapy.
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Our findings revealed that a simple linear model leverag-
ing only two features—specifically, bandPow30 40 kurt
and mfcc 10 kurt—achieved a notable accuracy of 75% in
predicting the efficacy of oral appliance therapy.

Moreover, our investigation highlighted
bandPow30 40 kurt as the most pertinent feature,
reflecting the tailedness of spectral power distribution within
snoring segments between 30 to 40 Hz. This frequency range
aligns with high-frequency resonances during snoring, often
indicative of upper airway characteristics. Previous studies
have suggested that individuals with apnea exhibit pronounced
high-frequency formants in their power spectrum (compared
to control groups [12]). This observation indicates heightened
spectral activity in higher frequencies among individuals
with OSA. Therefore, the efficacy of oral appliance therapy,
potentially attributed to upper airway modifications, appears
to be reflected in the upper-frequency spectrum, which is a
noteworthy finding of this study.

Moreover, in contrast to previous studies highlighted in
the literature, such as the work by Huntley et al. [13], which
utilized DISE on 40 participants achieving a sensitivity of 75%
and specificity of 50%, Vena et al. [9] achieved a sensitivity of
70% and specificity of 78% on 108 individuals using airflow
recorded during full PSG, and our prior research [10] demon-
strated a sensitivity and specificity of 88% based on a cohort
of 50 participants using the time-frequency analysis of snor-
ing vibrations. However, our approach in this study differed
significantly; it centred more on a statistical analysis aimed at
constructing a straightforward and easily interpretable predic-
tive model.

While this research offers valuable insights within the field,
it is essential to acknowledge several limitations that necessi-
tate attention in forthcoming studies. This study is based on a
relatively small sample size and a limited age group, which can
question the generalizability of the findings. Furthermore, the
proposed approach is sensitive to the feature selection method.
Also, this study primarily focused on spectral features due to
their proven efficacy in snoring analysis, while incorporating
temporal features could further enhance the analysis. There-
fore, future studies could explore alternatives to address these
limitations.

In summary, our study delved into the viability of employ-
ing statistical analyses to identify the most effective features
for straightforward prediction of OSA treatment through snor-
ing analysis. Our findings underscore that utilizing just two
simple features can yield a prediction accuracy as high as
75%.
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