
 1 

The 46th Conference of The Canadian Medical and Biological Engineering Society 

La Société Canadienne de Génie Biomédical 

Predicting Hip Kinematics with CNN during Cycling Task  
R. Ahmadi1, A. Parsaei2, A. Komeili1,2 

1 Department of Mechanical Engineering, University of Calgary, Calgary, AB, Canada 
2 Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada 

 

 

Abstract—The traditional method of analyzing hip joint kin-

ematics during pedaling task involves motion capture system, 

which is a relatively expensive method with limited accessibility 

and lack of real-time applicability in clinical and training envi-

ronments. To address this gap, this study leveraged a Convolu-

tional Neural Networks (CNNs) model to predict the hip joint 

kinematics during pedaling task on a stationary cycling ergom-

eter. The present study involved 10 participants (eight males 

and two females), without any injury in lower limbs to ensure 

the purity and relevance of the data. Using Vicon motion cap-

ture system, a comprehensive dataset of hip joint kinematics pa-

rameters were collected. A CNN model with five hidden layers 

was trained on this dataset. 

Our results showed a notable accuracy in predicting hip joint 

kinematics parameters with a Root Mean Square Error 

(RMSE) of 2.98±0.61° for hip flexion, 1.51±0.46° for hip adduc-

tion, and 1.73±0.49° for hip rotation. These values, within ac-

ceptable limits, demonstrate the model's robustness in hip meas-

urements.  

This study contributes significantly to the biomechanical 

study of hip joint, offering a potential integration of predictive 

models and real-time monitoring of hip joint kinematics during 

pedaling exercise with stationary ergometers. 

Keywords— Machine Learning, Motion Analysis, Cycling, 

Convolutional Neural Network. 

I. INTRODUCTION  

Cycling, as a multifaceted physical activity, holds signifi-

cant importance in different fields ranging from sports per-

formance optimization to rehabilitation and ergonomics [1]. 

The accurate monitoring and prediction of hip joint kinemat-

ics during cycling tasks can be used to adjust training and 

enhance performance optimization. Enhancing our under-

standing of movement patterns and joint kinematics could 

lead to more effective injury prevention strategies. Moreover, 

it provides valuable insights into ergonomics for bike design 

and manufacturing [2], [3]. Traditional methods for analyz-

ing human motion face several challenges. These methods 

include medical imaging techniques like fluoroscopy or mag-

netic resonance [4], [5], skin-based methods such as optoe-

lectronic motion analysis cameras [6], [7], inertial sensors 

[8], [9], marker-based methods, and marker-less motion cap-

ture techniques [10]–[13]. These approaches require special-

ized equipment and laboratory spaces, creating a barrier due 

to resource intensity. High costs and limited access render 

lower limb analysis during cycling impractical for many clin-

ical settings. Furthermore, the data collection and processing 

are labor-intensive, with the creation of dynamic musculo-

skeletal simulations often spanning several days, detracting 

from its practicality in everyday clinical practice [14]. 

In response to these limitations, advancements in machine 

learning (ML), particularly regression-based techniques, and 

human pose estimation algorithms showed promising solu-

tions to replace manual work in kinematics analyses [15]–

[18]. In these approaches, in-vivo posture data from several 

individuals are first collected via a skin-based motion capture 

system during various physical activities. A machine-learn-

ing, such as artificial neural networks (ANNs), is subse-

quently trained on these data. The ML based methods hold 

possibilities for predicting and understanding body kinemat-

ics without the need for costly sensors or cameras. However, 

they confront issues with generalization across various 

measures, tasks, and populations, alongside challenges in en-

suring accuracy and robustness in motion analysis [15]–[19]. 

While numerous studies have explored various ML mod-

els in different activities [10], [15]–[22], a significant portion 

of studies [16], [17], [19], [20] used classic feedforward neu-

ral networks. It has been shown that CNN outperforms clas-

sic ANN models in predicting joint kinematics during gait 

[15], [21]–[23]. Nevertheless, the application of CNNs in an-

alyzing and predicting the kinematics of cycling is yet to be 

conducted.  

This study is aimed at developing a CNN model for pre-

dicting lower-body joint angles, particularly the hip joint, 

during a pedaling task on a stationary cycling ergometer, and 

validating the CNN by comparing its predictions with the 

motion capture measurements. The CNN was trained on a da-

taset of in vivo recordings, with the premise that embracing 

input complexity and the variability of data will bolster the 

model's resilience. 
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II. MATERIALS AND METHODS 

A. Subjects and Task 

The study involved ten healthy individuals, comprising 

eight males and two females. All participants were right-

footed, aged at 24-39, BMI between 18 and 26 kg/m^2, and 

without a history of musculoskeletal disorders during the last 

three months. All in vivo experiments were carried out after 

institutional ethics committee approval and informed consent 

from subjects. 

Each individual performed 50 cycles of pedaling at two 

cadences, with fast and normal self-selected pace. The test 

was repeated at 3 different saddle positions. To prevent fa-

tigue development, subjects were free to take a rest between 

tasks or skip a task when it was too difficult to perform. 

B. In vivo data collection 

Lower-body kinematics data were recorded using a 10-

camera Vicon motion capture system (Vicon Motion Sys-

tems Inc., Oxford, UK) (Vicon®, 2002) at a sampling rate of 

100 Hz. Thirty-two passive reflective skin markers were 

placed on lower limbs (Figure 1). Pedal coordinates (X, Y, 

Z), time (percentage of task) duration of each cycle, saddle 

height, weight, and height of subjects were used as inputs into 

the CNN. The test was started by instructing the participant 

to stay upright for 3 seconds to allow static posture measure-

ment for each experiment. 

Lower-body link-segment models were reconstructed us-

ing the 3D coordinates of the 32 target markers (Figure 1) 

captured by the motion capture system. An OpenSim model 

[8] was scaled to build a personalized musculoskeletal model 

for each participant. The hip joint kinematics were computed 

using the OpenSim inverse kinematics (IK) tool (version 

4.3). 

 
Figure 1 Experimental setup and placement of markers 

C. Development of CNN 

CNNs are a specialized type of NN model that has shown 

remarkable performance in various tasks, including kinemat-

ics prediction and time-series data [15], [21]–[23]. This study 

used a CNN model with five hidden layers to estimate joint 

kinematics. First, the Standard Scaler function from the 

Sklearn library was used for scaling features and targets to 

ensure all variables are in the same range (between zero and 

one). Targets were scaled back to their original scale using 

the same scaler after predictions. Then, the model architec-

ture was defined with an input layer size of 8. Then two con-

volutional layers were added, each followed by a max pool-

ing layer. Both convolutional layers had 32 filters with a 

kernel size of three and a “ReLU” activation function. The 

max-pooling layers had a pool size of two. These layers 

helped reduce data dimensionality and identify the most 

prominent features. After the max-pooling layers, a flattening 

layer was used to convert the pooled feature maps into a 1D 

vector. Two dense layers with 32 and 16 units with a linear 

activation function were followed by a dropout layer to pre-

vent overfitting. The output layer consisted of three units, 

with each unit predicting a specific hip joint angle: flexion, 

adduction, and rotation. The ’Adam’ solver (with a learning 

rate of 0.01), a stochastic gradient-based optimizer, was used 

for weight optimization, and the loss function was “Mean ab-

solute error”. The Early Stopping function was used to mon-

itor the validation loss and stop the training if the loss did not 

improve after five epochs. The batch size was set to 32, and 

the model was trained for a maximum of 100 epochs. In this 

model, the optimal activation function (among ’ReLU’, ’Sig-

moid’, and ’Tanh’) in hidden layers, the optimizer (among 

’Adam’, ’RMSprop’, and ’SGD’) and its learning rate 

(among 0.1, 0.01, and 0.001), and the number of neurons (be-

tween 16 till 256) in each convolutional layer were found 

through grid search. 

D. Performance evaluation of the CNN 

To investigate ML model performance for predicting the 

targets for the same participant, the intra-subject examination 

was performed. In the intra-subject examination, 70% of par-

ticipants data were used to train the ML model and the other 

30% was used to validate and test the model with a ratio of 

50:50. 

To compare the performance of the ML model with liter-

ature, the Root Mean Square Error (RMSE) and R2 between 

the computed and predicted targets in test dataset were cal-

culated for each cycle and each participant.  

III. RESULTS 

The RMSE and R2 results for joint kinematics are shown 

in Table 1. The ranges of motion for hip flexion, adduction, 

and rotation were 60, 20, and 15 degrees, respectively. As 
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Table 1 shows, the RMSE for hip flexion, adduction, and ro-

tation reflects the model's varying precision during pedaling. 

Specifically, the RMSE was 2.98±0.61° for hip flexion, 

1.51±0.46° for hip adduction, and 1.73±0.49° for hip rota-

tion. The percentage of RMSE with respect to the range of 

motion for hip flexion, adduction, and rotation angle was 

4.9%, 10%, and 11.5%, respectively, suggesting a more reli-

able prediction of hip flexion movement compared to others. 

This was reflected in a higher R2 of 0.97 for hip flexion, com-

pared to R2 of 0.91 and 0.89 for hip adduction and rotation, 

respectively. Even though there is a lower RMSE in adduc-

tion and rotation compared to the flexion angle of the hip 

joint, their range of motion was smaller, which means the 

model is less accurate in the prediction of hip adduction and 

rotation angles.  

Table 1: RMSE values across hip joint angles predicted by the ML 

model and compared with those calculated from the OpenSim through in-

verse kinematics (ground truth). 

 RMSE R2 

Hip flexion 2.98±0.61 0.97±0.06 

Hip adduction 1.51±0.46 0.91±0.11 

Hip rotation 1.73±0.49 0.89±0.15 

 

Examples of the predictions by CNN (dashed line) com-

pared against those measured by OpenSim during a full cycle 

for participants are displayed in Figure 2. As can be seen, the 

CNN model provided the best predictions by following 

OpenSim inverse kinematics output (solid line) for hip flex-

ion and better than hip adduction and rotation. 

 

  
Figure 2 Joint angles predictions by CNN model (dashed line) com-

pared to joint angles derived from OpenSim IK tool (solid line) across one 
cycle for hip flexion (a), hip adduction (b), and hip rotation (c) angles. 

IV. DISCUSSION 

The present study effectively showcased the utilization of 

an innovative approach, the CNN model, for predicting hip 

joint kinematics. The CNN model exhibited satisfactory per-

formance, with the RMSE values for hip flexion, hip adduc-

tion, and hip rotation within acceptable limits, signifying the 

model's robustness in capturing the complex dynamics of 

joint movements compared to other models [10], [15], [17], 

[18], [24]. These studies have reported RMSEs for hip flex-

ion, hip adduction, and hip rotation between from 3.4° to 

7.2°, 2.6° to 4.2°, and 2.0° to 3.22°, respectively.  

The inclusion of CNN model in our predictions is a step 

forward in biomechanical modeling, offering a more realistic 

and practical representation of model confidence, which is 

especially critical in clinical applications. The ability of the 

CNN to closely predict the actual movement patterns, as ev-

idenced by the time-series analysis, supports its potential for 

deployment in the development of personalized rehabilitation 

plans and orthotic designs, where motion capture study may 

not be feasible. Despite the lower correlation observed in 

some joint kinematics (hip adduction, and rotation), the 

model still provides valuable insights into the movement pat-

terns, which can be further refined with additional data or 

more sophisticated modeling techniques.  

The study's findings suggest the potential integration of 

predictive models and real-time monitoring of kinematics of 

the hip joint during cycling exercise with stationary ergome-

ters. This CNN-based method has the potential to have a 

meaningful impact on the clinics by introducing a method 

that eliminates the need of motion capture systems. The next 

steps involve the prediction of other joint angles of lower 

limbs, and increasing the number of participants. The study 

will continue by recruiting patients with hip osteoarthritis to 

investigate the effectiveness of ML model in prediction of 

joint angle improvement through rehabilitation programs. 

V. CONCLUSIONS 

In this study, it was demonstrated that ML techniques 

could be accurate enough to be considered as an approach to 

address the limitations inherent in traditional biomechanical 

analysis methods. It was further highlighted that the high per-

formance and capability of CNN models make them espe-

cially suitable for predicting the joint kinematics of the lower 

limb, thereby reinforcing the applicability of ML in biome-

chanical studies. Successful implementation of this CNN 
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model enables us to monitor changes in patient body move-

ment outside the clinic, where a motion capture system may 

not be available. 
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