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Abstract—This paper presents a cluster analysis of raw tri-
axial accelerometer data aquired from various human physical
activities as well as simulated falls. Clustering was performed
using K Means, Gaussian Mixed Model and Fuzzy C-Means
clustering. In our analysis we focused on two problems: the
first clustering problem was based on activity recognition and
differentiation from simulated human falls, while the other
problem focused on distinction between single jerk events (e.g.
jumping, falling) and continuous activity signals (e.g. running,
walking).

Index Terms—signal processing, accelerometer, clustering,
biomedical engineering, data analysis

I. INTRODUCTION

In recent times Human Activity Recognition (HAR) has
become a research area that attracted a great deal of interest,
especially in biomedicine and biomedical engineering. One
of the reasons for the increased popularity of the area is
the availability of data: today user data are available through
many devices, such as smartphones and their apps, portable
sensors, wristbands, smartwatches, etc. for real-time analysis.
With the surge of biomedical data science, more and more
artificial intelligence (AI) techniques are employed to discover
knowledge, unveil latent data behavior, generate new insight,
and seek optimal strategies in decision making. Different
AI methods have been proposed and developed in almost
all different biomedical data science fields that range from
healthcare analytics, electronic medical records (EMRs) data
automation, early disease diagnosis, drug discovery, single-
cell RNA sequencing and COVID research (1). The statistical
analysis of biological data acquired from various sensors
can provide useful information for a wide range of medical
applications, one of them being elderly care.

Falls among the elderly population represent a significant
challenge for public healthcare systems, especially with the
growing elderly population in developed nations. According
to data from World Health Organization (WHO), falls rank
as the second most common cause of unintentional injury-
related fatalities on a global scale (2). Moreover, it is also
important to stress the fact that individuals aged 60 and above
experience the highest incidence of fatal falls. As reported in
”United Nations World Population Ageing 2020 Highlights”,
the living arrangements of elderly have changed, increasing the
number of people living independently (3). Living on one’s
own at this age can definitely put people at increased risk

even when performing daily routine activities due to decline
in motor skills.

Fall detection as a research area has attracted interest
in recent times since users generate real time data from
portable medical devices, which can be wearable (attached
to the subject’s body) or non-wearable (e.g. cameras, pressure
sensors, ultrasound or optical motion sensors). Methods based
on wearable sensors offer advantages in terms of cost, size,
weight, power consumption, ease of use and portability.

Since machine learning and deep learning-based approach
tend to be more popular areas of focus, cluster-based analysis
of accelerometer data remains a fairly scarce research area.
However, some authors have explored clustering of such data,
whether solely accelerometer data (4) or as a sensor fusion
analysis (5). Since we have already performed supervised
machine learning analysis for human activity recognition in
our previous research (6) (7), the use of unsupervised methods
such as cluster analysis could provide new insights for further
research of this particular signal processing problem.

II. MATERIALS AND METHODS

A. Data Acquisition

The data used for this analysis consists of two merged
time series datasets, UniZg activ2 dataset and UniZgFall1
dataset. The acquisition of signals for both datasets was
conducted on the premises of University of Zagreb, Faculty of
Electrical Engineering and Computing (8) (9). The acquisition
of data for both datasets used in this analysis was conducted
using wearable Shimmer3 Inertial Measurement Unite (IMU)
sensors. Shimmer3 is a battery powered wireless sensor node
that contains multiple sensors. Each sensor node consists
of multiple micro-electromechanical systems (MEMS), which
include two 3D accelerometers (a Wide Range and a Low
Noise Accelerometer), a 3D magnetometer, a 3D gyroscope,
a barometric altimeter and a temperature sensor, as well as a
Bluetooth device which enables data streaming in real time.

1) UniZg activ2 dataset: This dataset contains human ac-
tivity signal data recorded using the aforementioned Shimmer3
inertial measurement unit (IMU), using its built-in triaxial
wide range accelerometer with a range of +/- 8g, triaxial
magnetometer and triaxial gyroscope sensors at a sampling
frequency fs of 204.8 Hz. Only accelerometer data was used
for this analysis. 19 subjects aged 15 to 44 wore the device
attached to their waist with a Velcro belt and performed



nine activities of daily living (”sitting down”, ”walking”,
”standing up from sitting”, ”standing up from lying”, ”walk-
ing downstairs”, ”walking upstairs”, ”lying down”, ”running”
and ”jumping”) and three simulated falls on a 2 cm thick
tatami mat (”falling forward”, ”falling backward” and ”falling
sideways”). That brings to a total of 866 signals describing 12
classes for prediction. The waveforms of accelerometer signals
describing each activity are presented in Figure 1. For the
purposes of this research, we grouped all three falling activities
as one activity, ”falling”.

2) UniZgFall1 dataset: Another dataset used in our re-
search contains human simulated fall data of 39 healthy sub-
jects who participated voluntarily, 12 of which were females
and 27 males. All participants gave their informed consent
before participating in the study. While recording activities
in this study we used a Wide Range Accelerometer with a
measurement range set to ±8 g, a magnetometer, a gyroscope,
as mentioned in the earlier research by Šeketa et al. (9), with
an additional barometric altimeter. Recordings of barometric
altimeter, magnetometer and gyroscope were not used for
the purpose of this analysis. All sensors were sampled at a
frequency fs of 201 Hz.

The subjects wore three Shimmer3 devices. Two of them
were placed above the navel, and the third on subjects’ right
hip, at the height of where one would wear a belt. Despite
being provided with verbal guidance, it was essential for the
participants to attach the sensors themselves. This approach
aimed to enhance the reliability of the recorded data, as
real-world users of wearable fall detection systems should
ideally be capable of placing the sensor without the need for
professional assistance. Following the placement of the sensor
nodes, the subjects performed five distinct simulated falls.

Fig. 1. Visualization of raw accelerometer signals of physical activities
- UniZg activ2 dataset, in sequence from left to right: running, walking,
jumping, lying down, standing up from lying, standing up from sitting, sitting
down, walking downstairs, walking upstairs, falling

TABLE I
PHYSICAL ACTIVITY TARGET CLUSTER BELONGING

Activity Label 1 Label 2
Running ADL Continuous activity
Walking ADL Continuous activity
Jumping ADL Single event

Lying down ADL Single event
Sitting down ADL Single event

Standing up from lying ADL Single event
Standing up from sitting ADL Single event

Walking downstairs ADL Continuous activity
Walking upstairs ADL Continuous activity

Falling Fall Single event

B. Data Preprocessing

The cluster analysis involved two types of clustering using
time domain features: by activity type, involving two cate-
gories (”Activity of daily living, ADL” and ”Fall”) and by
signal event type based on continuity, also involving two cat-
egories (”Continuous activity” and ”Single event”). Labeling
of physical activities in both cases is shown in Table 1.

Data clustering consisted of analysis of four different ac-
celerometer signals: accelerometer signal data in all 3 axes
(X, Y and Z), and acceleration vector magnitude (AVM):

AVM(n) =
√
a2x(n) + a2y(n) + a2z(n) (1)

where ax, ay and az represent acceleration values along
corresponding axes.

Due to the non-periodic nature of motion signals, the
accelerometer data were described using statistical measures
of central tendency and dispersion: signal minimum and
maximum, range, mean, median, standard deviation, variance,
mean absolute deviation (MAD), interquartile range (IQR),
skewness, and kurtosis. Apart from above mentioned, two
additional features were considered for the feature selection
process: signal energy Es and signal magnitude area SMA,
described in equations 2 and 3.

Es =

∫ T

0

|s(t)|2 dt (2)

SMA =
1

T

∫ T

0

|x(t)− ax|+ |y(t)− ay|+ |z(t)− az| dt (3)

where x(t), y(t) and z(t) represent the value of signal
s(t) along corresponding axes. Offset correction for each axis
in equation 3 are represented as ax, ay and az . A pairplot
visualization of each feature’s distribution and relationships
between two features is shown in Figure 2.

After the initial feature extraction, in order to build simpler
and more comprehensible models and increase their perfor-
mance, feature selection was conducted using various data
analysis methods. In this study we used correlation matrices
to illustrate the relationships between features or between
features and an output (e.g. cluster membership). Through the
use of correlation analysis certain features have proven to be
redundant, and were therefore removed (e.g. skewness, IQR).



Fig. 2. Pairplot showing feature distribution and relationships between
features. Activities of daily living were marked in blue, and falls in orange.

Feature selection includes methods for dimensionality re-
duction by generating new features from the initial feature
set. For this approach we used principal component analysis
(PCA). Two principal components were created by combining
several original features, explaining 99.87 percent of variance.

III. RESULTS

For clustering of human activity signals we used three
methods:

• K Means
• Gaussian Mixture Model (GMM)
• Fuzzy C Means (FCM)
The reason behind selecting the abovementioned methods

lies in their ability to perform with already specified number
of clusters, in this case N = 2 for both clustering problems.
The clustering problems consist of performance analysis of
various clustering methods when dealing with four different
accelerometer signal data.

The dataset was clustered in two separate occasions depend-
ing on accelerometer signal properties. Tables 2 and 3 present
the perfomance of cluster methods with signal being labeled
depending on the type of human activity represented by given
signal and by event type in terms of continuity. Visualization
of the cluster results is illustrated in Figure 3. In both cases
the number of target clusters N was equal to two.

The results show a disproportion among performance re-
garding the first cluster labeling criteria and the second, as
every clustering method performs better when distinguishing
whether a signal belongs to activities of daily living or falls
rather than distinguishing the continuity of given activities. As

Fig. 3. Visualization of AVM signal data labeled by activity type and event
type (a.), and the cluster results using K Means, GMM and FCM clustering
methods (b.)

expected, AVM signal analysis performs with better results
than sole axis signal analysis. When comparing separate axis
datasets, there was no indication to conclude that one axis
data that performed significantly better than the others. The
expected premise included Y axis dataset to perform with best
results since it describes changes in vertical positioning of the
sensor, which faces the biggest change in signal behaviour in
case of unexpected events such as falling, however that was
not the case. When it comes to AVM signal clustering, GMM
method performed best for both clustering problems, whilst
it is interesting to notice that K Means and FCM perform
identically when dealing with AVM data. The recall metric
mostly performs with poorer results than precision, which
is not ideal in this case since it means that there are more
false negative than false positive results. In this case a false
negative means that a fall occured, but was not recognized.
The main limitation of this study presents the imbalance of
clusters (ADL: 680 samples, Fall: 361 sample; continuous
activity: 308 samples, single event: 733 samples). In order to
overcome limitations to this study, an expansion of the dataset
with the collection of new accelerometer data is planned, and
eventual sensor fusion of accelerometer data with some other
biomarkers (e.g. altimeter data) is expected to improve the
research results.

IV. CONCLUSION

The focus of this research was performing several different
clustering analysis on two accelerometer signal datasets de-
pending on their properties. The goal was to get insights on
the performance of several clustering algorithms when dealing
with different human activities, and whether they can distin-



TABLE II
CLUSTERING RESULTS IN REGARD TO ACTIVITY TYPE

K means Gaussian Mixture Model Fuzzy C-Means

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

X axis
ADL

0.28
0.35 0.13 0.19

0.77
0.81 0.84 0.82

0.74
0.76 0.86 0.81

Fall 0.25 0.56 0.35 0.67 0.64 0.65 0.66 0.5 0.57

Y axis
ADL

0.33
0.48 0.3 0.37

0.33
0.48 0.34 0.4

0.33
0.48 0.29 0.36

Fall 0.23 0.39 0.29 0.2 0.32 0.25 0.23 0.41 0.3

Z axis
ADL

0.21
0.2 0.07 0.1

0.78
0.84 0.83 0.83

0.21
0.21 0.08 0.12

Fall 0.21 0.48 0.3 0.68 0.7 0.69 0.21 0.45 0.28

AVM
ADL

0.89
0.86 0.99 0.92

0.89
0.95 0.89 0.92

0.89
0.86 0.99 0.92

Fall 0.97 0.7 0.81 0.81 0.91 0.86 0.97 0.7 0.81

TABLE III
CLUSTERING RESULTS IN REGARD TO EVENT CONTINUITY. CE = CONTINUOUS ACTIVITY, SE = SINGLE EVENT

K means Gaussian Mixture Model Fuzzy C-Means

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

X axis
CE

0.6
0.28 0.22 0.25

0.48
0.33 0.76 0.46

0.42
0.31 0.77 0.44

SE 0.7 0.76 0.73 0.78 0.37 0.5 0.74 0.27 0.4

Y axis
CE

0.5
0.25 0.33 0.29

0.47
0.24 0.38 0.3

0.49
0.33 0.67 0.44

SE 0.67 0.57 0.62 0.66 0.51 0.58 0.75 0.42 0.54

Z axis
CE

0.56
0.17 0.13 0.15

0.52
0.36 0.78 0.49

0.55
0.18 0.15 0.16

SE 0.67 0.73 0.7 0.81 0.41 0.54 0.67 0.72 0.69

AVM
CE

0.55
0.39 0.99 0.57

0.68
0.48 0.99 0.64

0.57
0.39 0.98 0.57

SE 0.98 0.35 0.53 0.99 0.55 0.7 0.99 0.35 0.55

guish activities of daily living from falls, treating it as a binary
clustering problem. Another approach included different signal
labeling depending on its continuity, exploring the possibility
of recognizing and separating a single occurance (e.g. falling
or jumping) event from a continuous activity such as running
or walking, questioning whether we can gain new insights
in the field of human activity recognition and fall detection.
Gaussian Mixture Model (GMM) proved to perform best
regarding both the first (89% accuracy, 92% F1 score for ADL
and 86% F1 score for falls) and the second clustering problem
(68% accuracy, 64% F1 score for continuous activities and
70% F1 score for single events) . Given the fact that the dataset
used in this research was somewhat scarce (1041 total signals,
680 ADL and 361 fall signals), the achieved results indicate
promise for further research.
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