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ABSTRACT 
The performance of five different algorithm-based 

onset detection methods for surface electromyography 
(SEMG) data was analyzed relative to visually 
determined onset times from three expert volunteers.  
It was hypothesized that at least one algorithm would 
out-perform the others in terms of degree of 
correctness. 

 
Three-hundred data plots from three previous 

studies on motor control were selected as source data.  
The automated algorithms tested included:   i)  a 
forward-moving sliding window, considering window 
mean value and number of points above a threshold 
[12],  ii)  a backward-moving sliding window starting at 
the data peak, considering window mean value 
compared to a threshold (developed by authors),  iii) a 
backward-moving sliding window starting at the highly 
smoothed data peak, considering window mean value 
and number of points below a threshold (developed by 
authors),  iv)  a forward-moving sliding window, 
considering window mean value and number of points 
above a threshold lasting for a minimum number of 
consecutive windows [13], and v)  a system based on 
log likelihood ratios and maximum likelihood 
estimation [11].  Each method went through parameter 
optimization as part of the testing.   

   
The three expert volunteers determined onset 

times by visual inspection for the 300 data plots on two 
occasions for each of two filter methods:  a 2nd order 
Butterworth filter with 6 Hz cut-off frequency, and a 20 
ms sliding window root-mean-square (RMS) filter. 

  
The algorithms were ranked based on i) a Z value, 

expressing the average of each data plot’s deviation 
from the visually determined onset distribution and ii) 
having no more than 10% erroneous results.  The 
forward moving sliding window, considering window 
mean value and number of points above a threshold 
[12], resulted in the most accurate determination of 
onset time, with an RMS averaged Z value of 0.7738.  
However, the algorithms were comparable and several 
had unique advantages. 

 
INTRODUCTION 

The determination of electromyographic (EMG) 
onset time is an important step in electrophysiological 
data analysis [1-10].  The EMG onset marks the time 

at which a muscle is first considered to be active and 
is a fundamental characteristic used in biomechanics 
and motor control research.  However, despite its 
clinical importance, there is not yet a widely accepted 
standard with which the onset time is determined. 

 
A significant amount of literature reports the use of 

visually determined EMG onsets [1,2,5,8,11,12], but 
this method can lead to lengthy data processing times 
and rater bias.  The advantages provided by 
automated onset detection processes include the 
speed which onset times can be found and the 
inherent repeatability.  However, a fully automated 
system must have high accuracy in order to be trusted.  
Without high accuracy, the advantages of speed and 
precision are lost because the data will have to be 
reviewed manually to ensure correctness.  This is 
commonly the case and thus results of automated 
processes must often be re-examined by visual 
inspection [3]. 

 
The purpose of this study was to determine which 

of the five different algorithm-based onset detection 
methods provided the most accurate performance 
when tested against a distribution of visually 
determined onset times. 

 
METHOD 

Source Data 
Three-hundred data plots were selected evenly 

from three studies performed in the Motor 
Performance Laboratory at Queen’s University.  The 
muscles from which SEMG data were used included 
anterior deltoid, infraspinatus, pectoralis major, 
posterior deltoid, serratus anterior, subscapularis, 
supraspinatus, teres major, levator ani, rectus 
abdominis, internal obliques, external obliques, and 
multifidus. 

 
Abdominal muscle data were acquired using 

surface Ag-AgCl electrodes (Kendall Meditrace™) and 
a Bortec AMT-8 EMG amplifier system (two stage gain 
with preamplifier gain fixed at x200 and overall gain 
set to x1000, CMRR -120dB at 60Hz, RIN>1 GOhm, 
band-pass 10Hz-1kHz) and shoulder muscle data 
were acquired using DelSysTM DE 2.1 differential 
electrodes and an AMT-8 amplifier system (two stage 
gain with pre-amplifier gain fixed at x500 and overall 
gain set to x1000, CMRR -80dB at 60Hz, RIN>100 



MOhm and band-pass 20Hz-450Hz).  All data were 
acquired using a 16bit National Instruments AD 
Converter at a sampling rate of 1000Hz. 

 
Visually Determined Onsets  

Visually determined onset (VDO) times for all data 
plots were determined during four separate sessions 
by each of the three experts.  The experts each had at 
least five years of experience working with 
kinesiological EMG data in a research setting.  The 
time between detection sessions varied between one 
and three weeks. 

 
Each session consisted of selecting the onset 

location on all 300 plots, filtered with a 20 ms sliding 
window RMS filter for the first and third sessions, and 
a 2nd order, 6 Hz cut-off Butterworth filter with zero lag 
for the second and fourth sessions.  A computer 
program developed with MATLAB V7.0 R14 facilitated 
efficient onset detection for the experts.  The program 
allowed the experts to zoom-in to any level and to 
select the desired onset point with the mouse cursor.  

 
The following plot exclusion criteria were put in 

place:  (1) Plots were excluded from analysis if at least 
one expert considered a particular plot unusable or the 
onset location uncertain.  (2) A VDO value was 
excluded if it was deemed an outlier when compared 
to other experts’ estimates for a given plot, using 
Chauvenet’s criterion [14]. 

 
In order to determine if any onset value was 

an outlier, the data set was first assumed to be 
Gaussian.  Chauvenet’s criterion states that for a 
Gaussian distribution, a measurement should be 
discarded if the probability of its observance lies below 
1/(2*n), where n is the size of the distribution.  
Therefore, for the 12 VDO values determined for a 
given plot, any point with a probability of occurrence 
less than 1/(2*12)=4.17% is considered an outlier.  
This probability corresponds to a Z-value threshold of 
±2.0368. 

 
After the exclusions, the remaining onsets for each 

plot were used as a reference for the judgement of 
algorithm determined onsets.  The set of remaining 
VDOs is referred to as the reference distribution from 
this point forward. 

 
Algorithm Determined Onsets 

Algorithm determined onset (ADO) times were 
determined by five separate algorithms, implementing 
a variety of parameter combinations.  The initial 
ranges of parameters used for each algorithm were 
chosen according to the results of an unpublished pilot 
study.  Each parameter had several possible values 

and every combination of different parameter values 
was used.  All necessary parameter descriptions are 
given for each algorithm below and possible values 
are shown in Tables 1 and 2. 

 
Parameter descriptions 
Sliding window:  All algorithms implement a sliding 
window with a width defined by this parameter, which 
is used to detect a significant rise in activity. 
Threshold:  The amplitude threshold is defined as the 
mean of baseline activity plus a multiple of its standard 
deviation.  The multiple is defined by this parameter for 
algorithms 1 to 4.  For algorithm 5, this parameter is 
used in the maximum likelihood estimation. 
2nd Threshold (%):  Some algorithms require a certain 
number of data points within the sliding window to be 
above an amplitude threshold in order for muscle 
activity to be detected.  The number of points is 
defined by this parameter. 
Peak window (ms):  The 3rd algorithm finds the peak 
signal value within the window with the highest mean 
value, in order to ignore non-physiological spikes.  The 
window size is defined by this parameter. 
Baseline window (ms):  This is the size of window 
used to calculate baseline mean and standard 
deviation. 
Baseline method:  This parameter describes the 
location in the data series from which the baseline 
activity is taken. 

 
Table 1:  Parameters for Algorithms 1-4 

Parameter Alg. Possible Values 
Sliding Window (ms) 1,2,3,4 25 100 175 250 
Threshold  1,2,3,4 1.5 3 4.5 6 
2nd threshold (%) 1,3,4 20 40 60 80 
Peak Window (ms) 3 150 300 450 600 
Baseline Window (ms) 1,2,3,4 150 300 450 600 
Baseline Method 1,2,3,4 (1) Earliest window in plot. 

(2) Latest window in plot. 
(3) Use baseline window 
location that yields lowest 
possible threshold value. 
 

Table 2:  Parameters for Algorithm 5 
Parameter Possible Values 

Sliding Window (ms) 10 40 70 100 
Threshold  20 45 70 95 
Whitening Filter Order 6 7 8 9 

 
The algorithm descriptions can be found below.  

However, note that no numerical values are provided 
for amplitude thresholds, window sizes or other 
parameters as all possible values can be found in 
Tables 1 and 2. 

 
1. Developed by Studenski et al. [12] 



This algorithm used a double threshold approach to 
find the onset.  First, the earliest window with some 
percentage of data points exceeding an amplitude 
threshold was found.  Next, the leftmost point in the 
window was chosen to be the onset. 

2. Developed by Authors 
The latest window with a mean amplitude below an 
amplitude threshold and before the peak value in the 
series was determined.  The rightmost point in the 
window with amplitude below the amplitude threshold 
was chosen to be the onset. 

3. Developed by Authors 
Similar to (2), but with two differences.  First, the plot 
peak was chosen from the window with the highest 
mean value in the signal.  Second, in addition to the 
mean of the window being below some threshold, it 
was required that a percentage of data points were 
also below the amplitude threshold. 

4. Developed by Bonato et al. [13] 
Similar to (1), but with two additional conditions.  First, 
the window mean must also exceed an amplitude 
threshold.  Second, the window was only considered 
to hold the onset if the subsequent 29 windows 
satisfied the same amplitude-related criteria. 
5.   Developed by Staude [11] 
The range from which the onset time was selected 
was the earliest pair of adjacent windows with a log 
likelihood ratio exceeding a threshold.  The onset 
value was then selected from this range using 
maximum likelihood estimation. 

 
Algorithms 1 to 4 were implemented on data 

smoothed with a 20 ms sliding window with 19 ms 
overlap, whereas algorithm 5 was applied to raw data.  
The determination of ADOs for all algorithms and 
parameter combinations was done using MATLAB 
V7.0 R14.  The program would return an error value if 
a given method could not find an onset. 

 
Data Processing 

For a given plot, the value that an algorithm 
returned was categorized into one of three values.  It 
was either an error value as determined by the 
algorithm when a onset value should have been found 
(Type I error), a onset value as determined by the 
algorithm when an error value should have been found 
(Type II error), or a correct value to some degree of 
accuracy. 

 
All outliers and rejected data plots were removed 

during VDO determination, and so the remaining data 
plots were all considered to have a distinct onset 
value.  Therefore, when an algorithm could not find an 
onset value and returned a corresponding error value, 
that error was classified as a Type I. 

 

A Type II error occurred when an algorithm chose 
an onset value that was considered incorrect when 
judged against the reference onset distribution.  
Essentially, the algorithm did not correctly reject a plot.  
The corresponding calculations were done similarly to 
the outlier calculations during the VDO determination, 
using Chauvenet’s Criterion.  First, the ADO was 
temporarily added to the reference distribution and 
then the sample mean and standard deviation were 
recalculated.  The ADO was then classified as a Type 
II error if it had a Z value, relative to the temporary 
reference distribution, that exceeded the threshold 
calculated from Chauvenet’s Criterion. 

 
 Algorithm performance was gauged by two factors: 
(1) Type I & II error counts and (2) the accuracy of 
correct onset values relative to the reference 
distribution.  A threshold of 10% was set as an 
acceptable limit of Type I & II errors, and the accuracy 
was calculated as the root mean square of the Z 
values of all non-erroneous onset values, as shown in 
Equation 1.     
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Where Aa represents algorithm accuracy, N is the 

number of total plots used, and Za,i is the Z value for 
algorithm a, data series i. 

 
RESULTS 

The most accurate results from all possible 
parameter combinations were calculated for each 
algorithm as presented in Table 3.  Note that after 
exclusions, 237 plots were used in the analysis and so 
the 10% error threshold allowed no more than 24 error 
values.  Algorithms 4 and 5 were not able to meet the 
error value threshold, and so the next best cases were 
entered into Table 3.   

 
Table 3:  Parameter-optimized algorithm results 

Algorithm 1 2 3 4 5 
RMS Z Value 0.7738 0.9039 0.7992 0.7155 1.33

10 
Type I error  2 0 3 3 3 
Type II error  21 19 21 22 61 
Total error 23 19 24 25 64 
Searching 
Window (ms) 

175 100 25 100 100 

Threshold  1.5 1.5 1.5 1.5 45  
Second 
Threshold (%) 

80 N/A 60 80 N/A 

BL Window 
(ms) 

300 600 600 600 N/A 

BL Method 1 1 3 1 N/A 



Peak Window 
(ms) 

N/A N/A 150 N/A N/A 

Whitening Filter 
Order 

N/A N/A N/A N/A 7 

 
DISCUSSION 

Given the criteria for successful algorithms, the 
best results were found for algorithm 1.  Though 
algorithm 4 did not meet the specified error value 
criteria, it did provide significantly more accurate onset 
estimates and only exceeded the accepted error value 
threshold by 1 value.  The number of error values from 
the 237 plots were comparable for algorithms 1 to 4:  
23, 19, 24, and 25, respectively.  The refinements that 
separated Algorithm 3 from algorithm 2 did 
significantly improve performance, though at the cost 
of computational time and more error values.   
However, for off-line analysis the computational time 
for all algorithms was considered negligible for the size 
of data set used.  Algorithm 5 showed no advantages 
over the other four algorithms. 

 
Algorithm 3 presented a successful parameter 

combination between the third baseline method, which 
chooses the baseline window location that yields the 
smallest possible baseline value, and the minimum 
possible window length.  The algorithm’s good 
performance suggests that this combination can be 
very successful.  The optimal threshold values for 
algorithms 1 to 4 were all found to be the minimum 
possible threshold value.  For algorithms 2 to 4, the 
small threshold value was matched with the largest 
possible window length used to detect baseline noise.  
This suggests that algorithms are often successful 
when considering a small deviation from a relatively 
large baseline noise value.   

 
The number of parameter combinations tested 

was limited by computational time.  Though a greater 
resolution in parameter values would produce more 
effective parameter combinations, it was not believed 
that the improvement would yield significantly better 
algorithm results.  The number of algorithms tested 
was a further limitation of the paper, though a good 
representation of algorithm accuracy was still 
provided.  Further investigation will take place into the 
strengths and weaknesses of different algorithms and 
also the suitability of each algorithm and parameter 
combination to data with specific characteristics.  
Some examples are low signal-to-noise ratio, ECG 
interference, environmental noise, and EMG sensor 
movement artefacts. 

 
Overall, algorithms 1, 3 and 4 had comparable 

performance when parameters were optimized. The 

successful parameter combinations of all algorithms 
were presented and future developments were 
discussed.  As the source data used was real and not 
simulated, the results of this study have direct 
application in clinical research.  
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