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Abstract— Biomechanical modelling has many medical appli-
cations in computer assisted diagnosis and intervention related
to the breast. Examples include accurate breast cancer diagno-
sis, biopsies and surgeries, and breast post-surgery reconstruc-
tion. This approach also has industrial applications such as bra
design. Breast mechanical models can be developed using Finite
Element Method (FEM). Fundamental to reliable such breast
models is the breast reference geometry under no loading. Most
breast models use the breast Magnetic Resonance Image (MRI)
to develop patient-specific FE models. However, the breast MRI
scan is acquired under a prone body position which is associ-
ated with large breast tissue deformation resulting from grav-
ity loading. As such, the breast MRI scans can only provide
an approximate breast reference geometry, hence compromising
the model’s expected accuracy. Such compromised accuracy can
impact the accuracy of vital medical procedures such as breast
biopsies that require needle targeting within few millimeters. In
this study, an inverse algorithm is developed which aims at ac-
curate determination of the breast reference geometry. In the
proposed framework we generated two breast shape spaces, one
filled with points representing a breast undeformed shape while
the other containing points representing corresponding breasts
deformed due to gravity loading under prone body position ob-
tained using each breast’s FE model. To obtain a compact rep-
resentation of the two spaces before fitting a function between
them, principal component analysis was applied to each shape
point set. A neural network was trained to find a mapping rela-
tionship between the two spaces. For validating the accuracy of
reconstructed stress-free breast geometry, we applied gravity-
loading to assumed unloaded breast geometry using accurate
FE simulation and used it as input geometry. To validate output
stress-free breast shape, Intersection of Union (IoU) score and
Hausdorff distance to compare it to the input breast geometry.
Results indicated that the proposed inversion algorithm is accu-
rate in capturing the breast’s stress-free configuration as well as
in predicting its mechanical behavior.
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I. INTRODUCTION
Breast surgeries, as well as tumor tracking, prosthesis im-

plantation, and bra design, are critical applications that re-
quire precise understanding of breast tissue mechanics. The
mechanical behavior of breast tissue is known to be nonlinear
which is best captured using hyperelastic models. As such,
accurate modeling of the breast requires precise representa-
tion of both its reference stress-free geometry and its tissue
mechanical characteristics. Once this essential data is pro-
vided, determining the breast configuration and tissue distri-
bution under loading conditions pertaining to medical proce-
dures is relatively straight forward using finite element (FE)
modeling. While Magnetic Resonance Imaging (MRI) can
capture the 3D breast geometry and its tissue distribution with
desirable accuracy, it can only provide the breast configura-
tion under gravity loading while the patient is in prone po-
sition. Such deformed geometry cannot be used to develop
accurate FE models of the breast due to the breast tissue
substantial nonlinearity. This tissue nonlinearity adds another
complexity which pertains to the validity of the tissue hyper-
elastic model used to describe its mechanical behavior. It ne-
cessitates availability of such models obtained without grav-
ity effects, otherwise, accuracy of the breast model and its
fidelity is reduced. It is noteworthy that algorithms developed
to estimate the breast stress-free geometry require hyperelas-
tic model of the breast tissue. Most breast FE models have
been developed using hyperelastic models derived from ex-
perimental data obtained with breast tissue samples loaded
by gravity before they are mechanically stimulated. This ap-
proach has led to development of algorithms of the breast
stress-free geometry prediction where inaccurate hyperelas-
tic models derived from tests with gravity loading conditions
are utilized [1] [2], hence reduced reliability of the estimated
breast unloaded geometry.

Some studies have addressed the critical issue of
the breast stress-free shape through designing algorithms
that employ a generalized FE displacement/pressure (u/p)-
formulation where they assumed that the tissue exhibits
quasi-incompressible behavior under conditions of finite
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deformation [3]. However, the material properties utilized
in these studies are often derived from transform ma-
trix, neglecting the complexities introduced by the non-
homogeneous distribution of breast tissue in practical sim-
ulation models. Another study proposed an iterative inverse
FE algorithm aimed at identifying the unloaded configura-
tion of the breast [4]. Other researchers employed different
approaches to determine the stress-free configuration of the
breast. For example, Rajagopal et al. [5]used water immer-
sion and hyperelastic models, Lee et al. [6]inverted gravita-
tional forces, Pathmanathan et al. [7] solved finite elasticity
problems, Carter et al. [8] utilized iterative finite element
methods, and Eiben [9]and Eder [10]also employed iterative
techniques. The computational burden associated with these
methods renders such developed methods both too complex
and time-consuming.

To address these challenges and mitigate the above limi-
tations, we introduce an easily implementable technique that
utilizes MRI images as input for modeling. For accounting
for the heterogeneous characteristics inherent to breast tis-
sue, we introduce a space-filling strategy to generate numer-
ous conceivable configurations, hence mimicking the tissue
properties of a large hypothetical population. To tackle the
issue of breast tissue hyperelastic models under stress-free
conditions, we employed an machine learning based algo-
rithm we previously developed on our laboratory to calculate
tissue hyperelastic parameters under zero-gravity conditions
from corresponding parameters obtained using conventional
mechanical testing techniques. The integrated approach pre-
sented here allows for a more accurate and comprehensive
representation of breast tissue, enhancing the reliability of the
model for various clinical and research applications.

II. METHODS

The proposed algorithm was engineered to create two sep-
arate breast geometry spaces that represent the unloaded and
loaded shapes of the breast. Compact representation of these
two spaces are obtained using PCA before a mapping model
between them is obtained using a Neural Network (NN) func-
tion. This algorithm is illustrated in Figure 1 which shows a
detailed block diagram. As seen in this diagram, the algo-
rithm is divided into three fundamental parts. First, we built a
breast shape space filled with stress-free configurations gen-
erated using a combination of FE modeling and non-isotropic
scaling. In the second part, we generated corresponding shape
space of the breasts generated in the first space by applying
gravity loading through FE simulation. In the third part of
the algorithm, we employed PCA to obtain compact repre-
sentations of the two spaces before training a NN to find a ro-

bust mapping between the unloaded and loaded breast geom-
etry spaces. After training, the NN can be used effectively to
determine the corresponding stress-free breast configuration
for any input breast geometry acquired under gravity loading
conditions.

To generate a shape space pertaining to a population of
stress-free breasts, we initiated the process with a deformed
breast geometry obtained from MRI scans acquired in prone
position. Each image was then segmented and converted into
a FE mesh. Subsequently, we identified two sets of hyper-
elastic parameters: one derived from existing literature [11]
(denoted by Cloaded ,i) and the other obtained from our pre-
vious work [12] for unloaded hyperelastic parameters (de-
noted by Cunloaded ,i). These parameters were then paired to
form loaded and unloaded hyperparameter sets. To fill the
first space with stress-free shapes using FE simulation, each
breast model was subjected to varying levels of anti-gravity
loading, starting from 0.65G and incrementing by 0.05 up to
1.0G. For each level of anti-gravity loading, we assigned cor-
responding hyperelastic parameters to the breast tissue using
the following linear interpolation equation, thereby obtaining
a set of geometries corresponding to each simulation.

C0 .x ,unloaded , i = Cunloaded , i+0.x × (Cloaded , i −Cunloaded , i)(1)

Fig. 1: Block diagram outlining the proposed inversion algorithm
developed for constructing the breast stress-free geometry

To enrich the population of the undeformed breast shape
space, for each geometry obtained from the FE simulations,
we applied non-isotropic scaling to the node coordinates in a
cylindrical coordinate system. Two scaling factors were em-
ployed: ar for the radial direction and aL for the longitudinal
direction, with ar = 0.5aL. The value of aL varied from 0.85
to 1.3 in increments of 0.05 after multiple experimental tri-
als. In addition to enriching the population, the scaling fac-
tors aims at compensation for inaccuracies in the FE model
pertaining to the tissue stress induced anisotropy.
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Upon the construction of the two shape spaces, we ex-
tracted the surface nodes from the FE mesh models derived
from each space to represent each shape point in the space.
Due to using tetrahedral second-order finite elements
for meshing for accurate modeling of the breast tissue, the
total number of nodes of each model surface were averaged
at more than 1000 nodes. Based on the large amount of data
included in these points and their coordinates, PCA was per-
formed on the surface node sets in each shape space to
obtain a compact representation of the sets denoted by Sundef
and Sdef . The two sets of coefficients obtained from PCA
served as the input and output for training a NN to find a
computationally effective mapping function between the
two shape spaces. As for the selection of the optimal
number of principal components considering the
computation time, we conducted experiments ranging from
7 to 11 to strike a balance between retaining at least 95% of
the information content and compressing the data vector as
much as possible. This multi-faceted evaluation ensured that
the chosen PCA dimensionality captures the essential
features of the data while rendering it computationally
efficient for the subsequent NN training (total 8 layers
containing fully connection and dropout layers, 1600
neurons applying rectified linear unit ReLU as activation).
Following a thorough cross-validation, we opted for
RMSprop as our optimization algorithm. Its adaptive
learning rate and fewer hyperpaameters made it particularly
apt for dimensionality-reduced datasets, thereby miti-gating
the risk of overfitting.

For validation, we employed a reversed simulation ap-
proach, wherein we applied gravity to reconstructed state-
free geometry of the breast using FE simulation before com-
puting a synthetic MRI image using the FE displacement field
and MR image intensity values. This image was compared
with the original MRI model. To assess the differences be-
tween the two point cloud models, we compare their Inter-
section over Union (IoU) to identify areas of the greatest dis-
crepancy, which correspond to specific locations within the
breast tissue. The accuracy of reconstructed the stress-free
breast geometry was then evaluated using the Hausdorff dis-
tance between the two point clouds, providing a quantitative
measure of the model’s accuracy and reliability.

III. RESULTS

The evaluation metrics are shown in Table 1. Based on
varying selections of the number of PCA terms (PCs), we
evaluated Mean Squared Error (MSE) for prediction accu-
racy, Intersection over Union (IoU) for object overlap, and
Hausdorff Distance in millimeters to measure shape discrep-
ancies. Additional metrics include Mean HDu (mm) for aver
-aged shape differences under specific conditions and Recon
-struction Time in minutes is included to assess compu-
tational efficiency.
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Table 1: Evaluation Metrics

PCs 7 8 9 10 11

MSE 0.142 0.018 0.0064 0.0062 0.0063

IoU 0.799 0.853 0.898 0.903 0.9041

HD

(mm)

2.613 2.285 1.218 1.109 1.097

Mean

HDu

(mm)

0.25 0.22 0.212 0.209 0.21

Time

(mins)

4.8 5.4 7.1 13.3 18.5

Fig. 2: Comparison between two point clouds of (a) the ground truth breast
model extracted from MRI and (b) reconstructed breast model generated by

loading the state-free geometry with gravity loading.

IV. CONCLUSION

In this study, we introduced a novel method for determin-
ing the reference geometry of the breast under no gravity con-
ditions. This method is founded on integrating machine learn-
ing with finite element simulation. It builds upon and vali-
dates our prior work on estimating hyperelastic parameters of
unloaded breast tissue, offering a more nuanced understand-
ing of breast tissue mechanics. Utilizing an exhaustive explo-
ration of the breast shape space, our approach accounts for the
often-neglected heterogeneous and stress induced anisotropy
characteristics of breast tissue. We employed multiple sets of
parameters to validate the robustness of our model, showing
that it is not sensitive to the choice of parameters as long as
they are within a reasonable range. For quantitative assess-
ment, we evaluated the model’s performance based on spe-
cific criteria, demonstrating a significant reduction in error
rates and an improvement in the reliability of the estimated
reference geometry.

The depth of our model’s application suggests potential
suitability for various medical and engineering tasks, enhanc-
ing both safety and efficacy. Future work may include further
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validation using experimental set ups pertaining to clinical
applications and extension to other organs that undergo sub-
stantial deformation under gravity such as the liver. Partic-
ularly, the model’s performance under larger external force
loading conditions warrants further investigation. Overall,
our study marks a substantial advancement in breast tissue
mechanics and modeling, paving the way for enhanced di-
agnostic and surgical techniques as well as material design
innovations.

V. COMPLIANCE WITH ETHICAL STANDARDS
This study involving human participants was conducted in strict
adherence to ethical principles. Written informed con- sent was
obtained from all individual participants involved in the study.
Furthermore, the research protocol was rigorously reviewed and
approved by the Institutional Ethics and Review Board at each
participating institution, ensuring compliance with ethical
standards and participant safety.

CLINICAL RELEVANCE
The algorithm can be used as an effective tool in develop-

ing breast models with high fidelity, paving the way for devel-
oping reliable systems of image and computer assisted med-
ical diagnosis and intervention of the breast. Input of the al-
gorithmis preloaded breast geometry which can be extracted
from conventional breast MRI data. The output is the breast’s
stress-free reference geometry which can be used to develop
highly accurate nonlinear mechanical model of the breast.
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