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ABSTRACT 

We investigated the viability of a wrist-worn 

device that uses piezoelectric contact sensors to 

detect muscle vibrations and deformations, 

which are then used to classify gestures made by 

the wearer. Signals were recorded from an array 

of six piezoelectric sensors while the wearer 

made simple finger flexion tapping gestures. 

Using a support vector machine model, a multi-

class classification algorithm was developed. The 

mean gesture recognition accuracy was found to 

be 96%.  

INTRODUCTION 

Human biosignals, typically used for medical 

diagnosis, can instead be used for computer 

interaction. A popular example is the brain-

computer interface, which employs 

electroencephalography for computer input. 

Brain computer interfaces offer computer 

interaction without physical movement, a benefit 

to certain disabled people. Processing the 

electroencephalogram for brain computer 

interfaces is a complex machine learning 

challenge, and the hardware is often invasive, 

expensive and cumbersome. Alternative 

biosignals include electromyography[1] (EMG), 

mechanomyography[2] (MMG) and electrical 

impedance[3], which can be much easier to 

measure, control and interpret depending on the 

anatomical location. Computer interaction using 

biosignals can offer other advantages such as 

increased mobility, reduced physical demand, 

intuitive use and improved throughput. An 

example of computer control using EMG or MMG 

is myoelectric prosthetics. 

EMG research, particularly for diagnostics, is 

much more common than MMG, despite MMG 

having a higher signal-to-noise ratio.[4] MMG 

sensors detect muscle vibrations and motion. 

The most prevalent MMG sensor is the Hewlett-

Packard piezoelectric contact sensor[5], which is 

bulky and obtrusive. Accelerometers and 

condenser microphones are also used, and some 

MMG based computer interfaces that use 

condenser microphones have been 

investigated.[2], [6] In contrast simple off-the-

shelf piezoelectric sensors are cheap, small, and 

sensitive. Piezoelectric sensors have been used 

to detect skin conducted sound[7], bone 

conducted sound[8], and muscle deformation[9] 

for use in a computer interface. The former used 

an array of cantilever piezo-electric sensors 

specifically tuned to a variety of frequencies, 

while the other two operated as contact sensors. 

A piezo-electric sensor array of contact 

pressure sensors can record many signals 

simultaneously. A promising location for an array 

of sensors is across the wrist. Specifically, the 

palm side (volar) of the wrist deflects very 

noticeably during finger flexion gestures, such as 

typing. We hypothesize that the 

mechanomyogram of the wrist recorded by a 

piezoelectric contact sensor array contains 

enough information to accurately determine 

which finger is flexing. We test this hypothesis 

by using a custom built wearable device to 

record the wrist MMG signal for constructing a 

machine learning model able to classify gestures 

using the recorded signal. 

DEVICE DESIGN 

Piezo-electric Sensor 

The choice of sensor for this study was critical 

to designing a functional device. Piezo-electric 

sensors have a variety of form factors and 

materials. Quartz crystal sensors are the most 
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common, while newer polyvinylidene fluoride 

sensors are thin and light. The sensor chosen for 

this study, shown in figure 1, was a 10mm 

diameter quartz crystal piezo-electric disc, for 

several reasons. These sensors were found to be 

much more sensitive—than other sensors 

considered—to the small pressure changes that 

occur at the wrist during finger movements. Thin 

polyvinylidene fluoride tabs were nearly as 

sensitive as the quartz discs, and are more 

flexible.  

 

 

 

 

 

 

 

 

Figure 1: Photograph of the piezo sensor array 

wrist apparatus. Shown are the 6 piezo disc 

sensors, the soft Velcro strap, and the hook 

side Velcro for tightening. 

However, a serious drawback of the tabs is 

that they record a distinct signal at 

approximately 60 hertz when in contact with the 

skin. This is due to the body acting as an antenna 

to background electromagnetic fields created by 

the power lines within any building. This effect 

could be eliminated for the discs if the ground 

side of the disc was the portion of the sensor in 

contact with the skin. This couldn’t be achieved 

with the tabs as they are sealed in a conductive 

plastic sheath. Polyvinylidene fluoride piezo-

electric cable was also considered, but was found 

to be entirely lacking in sensitivity. 

Signal conditioning 

Despite the fine sensitivity of the piezo discs, 

and their high signal to noise ratio, further signal 

conditioning was required to improve their 

voltage signal prior to analog to digital 

conversion. A charge amplifier circuit was 

employed to boost the signal and apply some 

filtering to it, with the circuit diagram shown in 

figure 2. The circuit was a simple charge amp 

requiring only two resistors and a capacitor. 

Although a more complicated circuit may yield 

better results, charge amps are known for their 

low-noise and this design was an easy 

implementation. Through informal tests using an 

oscilloscope, an appropriate gain for the signal 

was determined. Applying this value within the 

charge amplifier gain design, while ensuring a 

low-pass cut-off frequency of 1Hz or less, the 

exact value of the circuit components were 

determined.  

 

 

 

 

 

Figure 2: Circuit model of the piezo-sensor and 

the signal conditioning circuit. 

Piezo-electric sensors are modelled as a 

charge generating capacitors, so they are unable 

to be used for direct current measurements due 

to slow discharge. Thus a static pressure yields 

no signal. As such, a level shift at half the analog 

to digital range of the piezo-electric signal was 

added to allow for bipolar signal recording. 

Essentially, when pressure is applied to the 

sensor, electric charge is added and when 

pressure is released, charge is removed, 

meaning the sensing had to allow for voltage 

swings in both positive and negative directions. 

Sensor apparatus 

The electronics hardware chosen permitted 

six simultaneous sensor measurements. Using 

the 10mm diameter piezo discs allowed for a 

6cm array of piezo discs, which appropriately fits 

across the volar side of the wrist. This location 

was chosen for the dense packing of tendons 

used to mostly control finger flexion, and it is 

well suited to a watch-like device form factor. 

Contact pressure of the piezo disc acts as a 

signal amplifier, as greater pressure allows for 

the detection of smaller pressure changes. As 

such, a wrist strap that allowed variable pressure 

through tightness was designed to house the 
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sensors while ensuring their continuous contact 

with the wrist. As simple loop of elastic soft-side 

Velcro was used for the wrist strap. Hook side 

Velcro was glued to the backs of the piezo discs 

for their affixation to the strap. Figure 1 depicts 

the entire wearable. The final experimental setup 

was a variable tightness wrist strap holding six 

piezo discs, each wired to individual charge 

amplifier circuits. The signal was recorded using 

a micro-controller to perform the analog to 

digital conversion and then sent to a PC over 

wired serial communication.  

GESTURE CLASSIFICATION EXPERIMENT 

Data Collection  

The voltage signal of each of the six piezo disc 

sensors were recorded at approximate 4 kHz 

during tapping motions conducted by the test 

subject. Single finger taps were chosen as the 

recording gesture as they involve rapid finger 

flexion which would yield a distinct signal, as well 

as being similar to that of typing. To correlate 

the signals obtained with each finger tapping 

motion and to determine precise timing of the 

gesture contact, a touch tablet was used.  

Data was recorded after fastening the piezo 

discs to the subject’s wrist. The piezo disc array 

produced six continuous signal channels, and the 

time of contact and release was record for each 

finger tap using the tablet. Over 60 trials were 

conducted for each finger tap, with a variable 

sequence in which each finger was made to 

move. The voltage signal was band pass filter 

between 1 and 150Hz, as the information of the 

mechanomyogram is found in that range.[10] 

Feature Analysis 

Feature extraction from the voltage signals 

was completed for use in classification of the 

gestures. To perform feature extraction, the 

signal around each tap gesture was windowed, 

creating a brief time frame in which to calculate 

pertinent features. The window length affects 

both the processing speed of the feature 

extraction and analysis, as well as the ability to 

classify in real-time. Humans perceive real-time 

as an event occurring less than 300 milliseconds 

after the action is initiated. This was the time 

chosen for the signal windowing, which therefore 

windowed each channel 150ms forward and 

backward centered around each time a tap was 

registered. Figure 3 depicts an example of the 

windowed voltage signals, showing five unique 

trials of the same gesture, for two of the six 

sensors. While this means the actual 

classification time is 150ms, no great decrease 

in classification accuracy was expected by 

reducing the time for feature extraction.  

 

 

 

 

 

 

Figure 3: The 300ms signal window from two 

separate sensors during five unique trials of an 

index finger tap gesture. 

Over 20 features in both the time and 

frequency domain were considered for use in 

classification. Using the reciprocal of these 

values as well, for all 6 sensors, yielded a feature 

set of over 200 features. Features included the 

signal maximum, minimum, root mean square, 

mean absolute deviation, mean and logarithm of 

mean absolute value, peak to peak value and 

time, zero crossings, waveform length, slope 

sign changes, Wilson’s amplitude, 7th order 

autoregression coefficients, peak, mean and 

median frequency, 2nd, 3rd and 4th order spectral 

moments, skewness and kurtosis of the 

frequency spectrum, average power and 99% 

occupied bandwidth frequency. Subsets of these 

features have been used in machine learning 

models for EMG, MMG and other related signal 

analysis.[7],[8]  

We hypothesize that classification is 

dependent on some ratio of features, e.g. high 

ratio of the root mean square between two 

sensors might indicate a gesture with a specific 

finger, and as such the reciprocal value of all 

features was included. To apply the ratio of 

feature values in the machine learning, a 
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polynomial kernel support vector machine, of 

various orders, was employed for classification. 

RESULTS AND DISCUSSION 

The support vector machine was trained and 

validated using k-fold cross validation, using ten 

groups. Only time domain features were used for 

the training as it was found that frequency 

domain features did not add to the accuracy, and 

are more computationally complex to determine. 

Polynomial kernels of order one to five were used 

in the support vector machine classification. An 

average cross validation classification accuracy 

of 96% was found for the third order polynomial 

kernel. Increasing the polynomial order did not 

seem to have an effect on the classification 

accuracy. Resubstitution error was zero in nearly 

all cases, except for the 1st order polynomial 

kernel.  

Classification errors occurred more frequently 

when trying to determine whether a gesture 

involved the second or third digit. Gestures with 

the fourth or fifth digit yielded no classification 

error, while the first digit was nearly as accurate. 

These results are summarized in table 1, the 

classification confusion matrix. It is important to 

note that a misclassification only occurred with 

one other gesture, e.g. the thumb was only ever 

misclassified as a ring finger gesture. 

Table 1: Confusion matrix of ten-fold cross-

validation for 3rd order polynomial kernel 

support machine gesture classification model. 

 

 

 

 

 

 

 

CONCLUSION 

This study developed a novel piezo electric 

sensor array worn at the wrist for finger 

movement identification. Signals from the 

sensors are suitable for use in a machine 

learning classification algorithm. Accuracy of up 

96% is achievable using only a limited number 

of features and just six sensors. Accuracy could 

be improved, and additional gestures, including 

simultaneous finger flexions, could be classified 

by increasing the number of signal features and 

sensors or using alternative machine learning 

methods. The gesture recognition method of this 

device can be used in myoelectric active 

prosthetics, for mobile computer interaction or 

hands-free virtual reality immersion. 
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Actual 
Gesture 

Model Classification Occurrence (%) 

Thumb Index Middle Ring Pinky 

Thumb 97 0 0 3 0 

Index 0 91 9 0 0 

Middle 0 6 94 0 0 

Ring 0 0 0 100 0 

Pinky 0 0 0 0 100 

 


