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Abstract— This paper explores automated face and facial land-
mark tracking of neonates for the purposes of vital sign esti-
mation. Utilising a publicly available dataset of neonates in the
clinical environment, 25 videos were annotated. Face and facial
landmarks (i.e. eyes and nose) tracking are then assessed. Addi-
tionally, the identification and tracking of the neonate’s forehead
and cheeks are purposed, as they are ideal regions of interest for
vital sign estimation. Tracking of the face produced an average
overlap score of 93.0%. Tracking of the eye and nose landmarks
produced mean normalised errors of 0.026 and 0.019 respec-
tively. The cheek region of interest could be effectively identified
and tracked, whereas the forehead region of interest identifica-
tion was incorrect 16% of the time.
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I.Introduction

Video monitoring provides a non-contact method for cardio-
respiratory monitoring. By providing heart and breathing rate
vital signs, it is potentially suitable for assisting clinicians in
clinical, home and remote environments [1].

Video-based neonatal vital sign monitoring can be divided
into four stages; (1) region of interest (ROI) detection, (2)
ROI tracking, (3) photoplethysmogram extraction, and (4) vi-
tal sign estimation. In our previous work [2], we developed
deep learning-based methods for neonatal face and facial land-
mark (i.e. eyes, nose and mouth) detection to cover step (1).
This paper builds upon our previous work for the second stage,
ROI tracking.

ROI tracking is an essential step in video-based vital sign
monitoring as patient movement, temporary clinical inter-
vention and facial occlusions (i.e. from bottle feeding and
sleep position) are commonplace in the clinical environ-
ment [3]. Past works have either implemented no track-
ing [4], repeated ROI detection [5], Kanade–Lucas–Tomasi
(KLT) feature tracker [3, 6–8], or kernelized correlation fil-

ter (KCF) [9–11]. Typically, ROI tracking is a more time-
efficient process compared to ROI detection which can be
time-consuming and prevent real-time processing [2].

For vital sign estimation, suitable ROIs have included
the entire face [3, 5, 11], the forehead [4, 8, 11, 12] and the
cheeks [12]. The forehead and cheek ROIs typically only
include skin, making them ideal for vital sign estimation.
However, because there are no readily identifiable landmarks,
tracking of these ROIs has either been non-existent or imple-
mented with poor success [3,4,11].

This paper evaluates face ROI and facial landmark tracking.
Utilising the tracked facial landmarks, selection and tracking
of the forehead and cheeks ROIs is then proposed and assessed.

II.Methods

A. Data Acquisition

The newborn baby heart rate estimation database (NBHR) [10]
is used for this study. NBHR [10] consists of 1,130 videos of
257 neonates at 0-6 days old, totalling 9.6 hours of recordings
with synchronous photoplethysmogram and heart rate phys-
iological signals. The newborn infants were recruited from
the Department of Obstetrics and Gynaecology, Xinzhou Peo-
ple’s Hospital, China. Biological sex was approximately equal
(Male 48.6%: Female 51.4%) [10]. Camera angle relative to
each baby’s location varied, facial occlusion was present in
a subset of videos from bottle feeding and sleep position,
and a variety of natural hospital room illuminations were ob-
tained [10].

As this is a preliminary study, a subset of 25 videos was
randomly selected for manual annotation. The first and final
frames of each video were annotated with a rectangular face
bounding box and 3 facial landmark positions, namely; the
right eye, left eye, and nose (see Figure 1 red annotations).

The face bounding box was defined as the area from the
forehead to the chin and between the ears. In cases of partial
occlusions, if subsections of the face were still visible/partially
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Fig. 1: Annotated Facial ROIs and Landmarks. Red = initial face ROI and
associated eye and nose landmarks. Blue = inter-ocular and nose lines.

Black = parallel inter-ocular and nose lines. Green = derived forehead and
cheek ROIs

visible in the area of occlusion, they were annotated as the face.
Otherwise, if a complete region of the face was occluded, it
was not included in the bounding box as the size of the face
occluded was difficult to infer.

B. Face and Facial Landmark Tracking

Face and facial landmark tracking were implemented together
using the KLT algorithm [6,7].

With reference face ROI inputted as the first video frame,
features for tracking are extracted using the minimum eigen-
value algorithm developed by Shi and Tomasi [6]. Addition-
ally, initial rectangular landmark bounding boxes are defined
with the landmark position as centerpoint and the size of the
bounding box being 20% size of the initial face bounding box.
The subset of facial minimum eigenvalue features within these
landmark bounding boxes is then identified. These features are
then tracked between successive frames using intensity gradi-
ent information as proposed by Lucas and Kanade [7].

For overall landmark position tracking, the median change
in the position of the features identified in the initial landmark
bounding box is used to update the position of the landmark.

C. Forehead and Cheek ROI Identification

The forehead and cheek rectangular ROIs are derived from
the relative positions of the facial landmarks and the size of
the initial face ROI.

Using the facial landmarks, two lines are derived (see Fig-
ure 1 blue annotations). The inter-ocular line is defined as the
straight line intersecting both eye landmarks. The nose line
is defined as the line that originates at the nose landmark and
intersects the inter-ocular line at 90 degrees.

The centre of the forehead is identified as the point along the
nose line x pixels past the inter-ocular/nose line intersection,
where x is 22.5% of the length of the face ROI. The size of the
forehead ROI is 22.5% of the face ROI (see Figure 1 green
annotations).

For identifying the cheeks, three additional lines are de-
fined (see Figure 1 black annotations). Namely, two parallel
to the nose line that intersects with the eye landmarks, and
one parallel to the inter-ocular line that intersects with the
nose landmark. The centre of the cheeks is identified as the
intersection of these three lines, offset by 10% and 5% of the
length of the face ROI parallel to the nose and inter-ocular line
respectively. The size of the cheek ROIs is 20% of the face
ROI (see Figure 1 green annotations).

D. Forehead and Cheek ROI Tracking

Two methods are proposed for tracking the forehead and cheek
ROIs. The first method utilises relative face movements in the
face ROI tracking to modify the forehead and cheek ROIs.
The second method uses the tracked eye and nose landmark
positions to recalculate the forehead and cheek ROIs.

E. Cheek ROI Selection

In a subset of videos, the neonate is sleeping on their side.
This means that one side of the face is more readily visible
and suitable for cheek ROI identification and tracking. There-
fore, based on the first frame, the proximity of the left and eye
landmarks to the face bounding box is calculated. The land-
mark furthest away from the bounding box is the side of the
face more available, and the associated cheek is then selected.

F. Evaluation

Results are compared to a baseline if the ROI/landmarks re-
mained stationary. Additionally, two existing KCF trackers are
tested for face tracking; the original KCF algorithm [9] and
an updated output constraint transfer (OCT) for KCF [13].
The KCF algorithms are implemented and evaluated as they
have been used for neonatal ROI face tracking in previous
works [10,11].

Face ROI: For assessment, we used the average overlap
score (AOS), which is the mean intersection over union (IoU).
IoU is the area of overlap divided by the area of union between
the reference and estimated bounding box.

Landmark Tracking: Mean normalised error (MNE) is used
for the assessment of landmark tracking between reference
(re f ) and estimated (est) landmarks for all test samples (N),
where the normalisation distance is the reference face bound-
ing box area (re f _bbox) (1),(2).
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Execution Time: We evaluated the average execution time
per frame within the video. The average execution time per
frame was calculated using MATLAB on a MacBook Pro CPU
2.3 GHz 8-Core Intel i9.

III.Results and Discussion

Table 1: Face Tracking Results

Method Face (AOS*) Time (ms)
Stationary Baseline 86.0% NA

KLT [6,7] 93.0% 5
KCF [9] 88.3% 1

OCT KCF [13] 90.2% 1
*AOS= Average Overlap Score

Table 2: Facial Landmark Tracking Results

Method Eyes (MNE*) Nose (MNE)
Stationary Baseline 0.256 0.074

KLT [6,7] 0.026 0.019
*MNE=Mean Normalised Error

Tables 1 and 2 present the results for face and facial land-
mark tracking. As highlighted by the improvement in AOS
and reduction in MNE compared to stationary baseline, track-
ing is essential as movement is commonplace, even when the
baby is asleep. The KLT algorithm produced the best results
with AOS of 93% and MNE of 0.026 and 0.019 for eyes and
nose landmarks, respectively.

Overall, the KLT algorithm was an effective tracker of mi-
nor movements, with the most common reason for the decrease
in AOS being a change in the size of the tracked bounding
box. Whereas, tracking the overall facial movement and fa-
cial landmarks was more reliable for finer movements and
minor rotations of the head. In two cases, an eye landmark
could not be tracked. Case 1 was due to a large sudden move-
ment resulting in the loss of tracking of the right eye. Case 2
was due to the neonate’s hand covering the left eye landmark

for part of the video. In future work, implementing previously
develop face and facial landmark detection [2] as a recovery
mechanism could resolve these two cases.

For cheek ROI selection, the simple formula to determine if
the left or right cheek was a more suitable ROI was effective
for 24 of the 25 recordings. From a qualitative perspective,
the formula to identify an appropriate ROI of the cheek was
effective. As the KLT algorithm for face and facial landmarks
was reliable, cheek ROI could be tracked effectively.

For forehead ROI selection, an appropriate ROI was se-
lected for 21 of the 25 recordings. The recordings with inap-
propriate forehead ROIs were due to the angle of the face in
the videos. This resulted in the false assumption that the nose
line was a continuation of the forehead. However, since these
forehead ROIs were outside the face bounding box, it is pos-
sible to automatically detect these cases. Similarly with cheek
ROI tracking, since the KLT algorithm for face and facial land-
marks was reliable, forehead ROI could be tracked effectively,
even in the cases with incorrect forehead ROI selection.

The average execution time per frame for the KLT and KCF
algorithms was 5 ms and 1 ms respectively. This speed is sig-
nificantly faster than using repeated ROI detection. In our past
work [2], our best-performing face and facial landmark detec-
tor had an execution time of 1.36 s, and the fastest existing
face and facial landmark detector had an execution time of
9 ms per image. Whilst not implemented, a combination of
ROI detection and ROI tracking should be utilised when large
motion or occlusion is present. ROI tracking is initially used
for its speed efficiency. When the quality of tracking deterio-
rates to a particular threshold, ROI detection should be used
to reinitialise the face bounding box and facial landmark lo-
cations. One metric presented by Dosso et al. [3] is to monitor
tracking quality as the number of tracked features. Whereby
a substantial loss of tracked features would suggest a large
motion or occlusion had occurred.

With regard to the general applicability of video monitoring
for neonates, this study only examined a small set of data (25
videos) of neonates aged 0-6 days old from Xinzhou People’s
Hospital. A larger and more diverse set, including neonates
aged 0-28 days, and with varying skin tones and ethnicity
would be required to make stronger conclusions. Different eth-
nicities have different facial structures and features that may
be more or less defined which would affect tracking. Whereas
varying skin tones make the contrast of facial structures and
features different, affecting tracking.

Additionally, considering gestational age for the applica-
bility of video monitoring is important. For instance, there are
significant differences between preterm and term facial ex-
pressions because of the development of facial muscles and
fat deposition. Preterm neonates generally have less defined
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features, which could make tracking more difficult. Energy
levels also differ, with energy levels and corresponding lev-
els of movement typically increasing with gestation and the
size of the baby. Higher levels of movement, especially rapid
movements, make tracking harder. In future, examination of
gestational age and tracker accuracy should be explored.

IV.Conclusion

The KLT algorithm for tracking is only appropriate for face
and facial landmark tracking when movements are relatively
minor, thus making it suitable only when the baby is asleep
or inactive. Whilst ROI tracking is significantly faster than
repeat ROI detection per video frame, a combination of peri-
odic ROI detection (e.g. per second) in conjunction with ROI
tracking, and/or recovery mechanism when tracking quality
drops below a certain threshold would be required when the
neonate is active.

Based on preliminary results, forehead and cheek ROI iden-
tification and tracking were promising, but struggled with par-
ticular face angles. Future work to improve forehead and cheek
ROI involves either the calculation and factoring in of head
orientation, and/or the identification of a larger set of facial
features to localise these regions more effectively. Addition-
ally, quantitative assessments of forehead and cheek ROI iden-
tification and tracking, similar to face and facial landmark
detection and tracking, are required.
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