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Abstract— Transformers are deep networks that operate on
loosely structured data such as natural language and electronic
medical records. Transformers learn embedding vectors that
represent discrete inputs (e.g. words; medical codes). Ideally,
a transformer should learn similar embedding vectors for two
codes with similar medical meanings, as this will help the net-
work make similar inferences given either of these codes. Pre-
vious work has suggested that they do so, but this has not been
analysed in detail, and work with transformers in other domains
suggests that unwanted biases can occur. We trained a Bidi-
rectional Encoder Representations from Transformers (BERT)
network with clinical diagnostic codes and analyzed the learned
embeddings. The analysis shows that the transformer can learn
an undesirable frequency-related bias in embedding similari-
ties, failing to reflect true similarity relationships between med-
ical codes. This is especially true for codes that are infrequently
used. It will be important to mitigate this issue in future appli-
cations of deep networks to electronic health records.
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I. INTRODUCTION

The last ten years have seen exponential growth in the vol-
ume of digital medical data [1] with the widespread adoption
of Electronic Health Records (EHRs), giving rise to the pos-
sibility of deep network-based prediction of medical events
with high accuracy [2].

EHRs are well suited [3] for processing by transformers
[4], a recent kind of deep network that is extensively used in
language-related applications. The input to a transformer is a
sequence of elements from a pre-defined vocabulary, such as
words and/or medical codes. Vocabularies typically contain
tens of thousands of items. Transformers learn a unique vec-
tor, called an embedding, to represent each vocabulary item.

A transformer should learn similar embedding vectors for
similar vocabulary items (e.g the words ”big” and ”enor-
mous”). A previous application of transformers to medical
records [5] suggested success in this respect. Specifically,
they reported that among the ten most similar embeddings
for each of the 87 most frequently used disease codes, 76%

corresponded to clinically valid relationships. However, in
that work clinical validity was not clearly defined, and this
analysis was not performed for embeddings of less common
codes. Meanwhile, in natural-language applications of trans-
formers, the relative frequency with which words appear in a
training corpus has been seen to result in biases in the embed-
ding space [6, 7]. The embeddings of low and high-frequency
words lie in different subregions after training, and due to dif-
ferences in frequency, some semantically similar words are
distant from each other in the embedding space [6, 7]. This
phenomenon has potential implications for transformers in
the medical domain, raising concerns for appropriate predic-
tion of uncommon disease codes [8, 9]. Clinical applications
of transformers could be even more susceptible to this issue
than language applications, because medical training data is
limited relative to internet-scale text corpuses. This is a con-
cern due to safety implications of medical applications.

This paper analyses disease-code embeddings in a trans-
former trained on medical records. We show that frequency-
related biases form systematically in the embedding space.
We study several examples in more detail, and show that the
transformer sometimes learns inappropriately similar embed-
dings for poorly related medical concepts, and non-similar
embeddings for closely related medical concepts. Finally, we
show that the transformer’s predictions are biased toward
more common diseases.

II. METHODS

A. Data

We used the Medical Information Mart for Intensive Care
(MIMIC) dataset, a collection of de-identified EHRs col-
lected from hospital patients [10]. We used the data in
MIMIC-IV v2.0, which contains information from over
315,000 patients collected between 2008 and 2019. MIMIC-
IV is freely available through PhysioNet [11] under a license
and data use agreement.

We used the ICD-9 and ICD-10 disease codes in the hosp
module of the MIMIC-IV dataset. To pre-process the data,
we filtered out patients who did not have at least one en-
try in the icd diagnosis table. For each of the remaining
190,121 patients, their hospital admissions were sorted by
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time and assigned an integer, starting from 1, to represent
the order of hospital visits. Each unique ICD-9 and ICD-10
code in the dataset was assigned a token using a WordLevel
tokenizer from the Hugging Face transformers library [12].
In total, there were 26,268 tokens, including the special to-
kens: [PAD], [CLS], [SEP], [MASK], [UNK], and 99 un-
used tokens. Lastly, we split off a test set of 15,231 patients
for fine-tuning applications and performed a 90:10 training-
validation split on the remaining data.

B. Model

We used the Bidirectional Encoder Representations from
Transformers (BERT) [13] transformer architecture, specifi-
cally the BERT-base specification with 768-dimensional em-
beddings, 12 attention heads, 12 transformer blocks. We used
0.1 dropout, parameter initialization of N (0,0.02), and a
post-LayerNorm transformer-block architecture. We used a
sequence length of 128 and truncated extra tokens. Similar to
the original BERT paper, we used word embeddings for the
tokens and a learned sequence-position embedding [13]. We
also added visit embeddings similar to [14], where all codes
assigned during a particular hospital admission used the same
visit embedding, based on visit order. Special tokens used a
visit token of 0. The three embedding types were summed
before being processed by the transformer model.

C. Training

Transformers are typically pre-trained on large unlabelled
datasets using a self-supervised objective, before fine-tuning
for a particular application on a smaller human-labelled
dataset. Pre-training prepares the model for fine-tuning and
largely determines the embeddings. BERT introduced the
Masked Language Modeling (MLM) pre-training task, where
the model is trained to predict hidden words in text. The ar-
chitecture and MLM pre-training approach used for BERT
has been adapted for medical applications in models such as
BEHRT [5] and Med-BERT [14]. Instead of processing se-
quences of words, these models process sequences of diag-
nosis codes for fine-tuning tasks such as disease prediction.

We pre-trained our network with the MLM task using a
masking probability of 15% and the same probabilities for
assigning a [MASK] token, a random token, and the same to-
ken as in [13]. We pre-trained our network for 25 epochs on
the training dataset with 157,401 patients. To investigate scal-
ing, we also pre-trained our network for 25 epochs on subets
of 25%, 50%, and 75% of the training dataset. We trained
three separate network instances with different randomly ini-
tialized parameters. We use the Adam optimizer [15] with
learning rate 1e-4, β1 = 0.9, and β2 = 0.999. The learning

Fig. 1: Density of cosine similarity values by code frequency groups.
Dashed lines represent the mean ± 2 std for the Rand-Rand distribution.

Fig. 2: Distributions of code frequencies in MLM labels (EHR data) and
model predictions.

rate was scheduled with linear warm-up for the first 10% of
steps and cosine decay for the remainder as in [13]. The train-
ing was performed on a single Nvidia RTX 3090 GPU. We
used the Hugging Face transformers library for the PyTorch
BERT model implementation and training [12].

III. RESULTS

Based on the embeddings of the pre-trained BERT model, we
generated t-SNE dimension reductions (not shown) to visual-
ize how the ICD codes were clustered. Our projection showed
three large lobes, with the most common codes all clustered
at the tip of one lobe.

To supplement the insights from the t-SNE visualization,
we carried out a small case study to understand which codes’
embeddings had the highest cosine similarity with those of
several common codes (Table 1). We observed some group-
ings of medically related codes with appropriately similar
embeddings, such as a similarity score of 0.4470 between
ICD-10 codes O99212 and O99213, representing obesity
complicating pregnancy in the second and third trimester,
respectively. However, some codes with similar embeddings
had no obvious medical relation, neither associative nor syn-
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3Table 1: Case examples of ICD codes and cosine similarities

Code 1 (frequency in
dataset)

Code 2 Case (frequency
in dataset)

Cosine
Similarity

Clinical relationship

J45909-10:
Unspecified asthma,
uncomplicated
(4.212%)

E039-10: Hypothyroidism,
unspecified

Common
(5.05%)

0.313 No apparent link other
than both having some
immune system etiology.

45991-10: Cough variant
asthma

Rare (0.01%) -0.155 These would be expected
to be very similar.

78659-9: Other chest
pain (3.612%)

7840-9: Headache Common
(2.372%)

0.315 Other than both being
forms of pain, they appear
unrelated.

R071-10: Chest pain on
breathing

Rare (0.006%) -0.073 Sub-types of the same
symptom; similarity would
be expected

73300-9:
Osteoporosis,
unspecified (3.264%)

49390-9: Asthma, unspecified
type, unspecified

Common
(5.52%)

0.264 They seem unrelated.

M818-10: Other osteoporosis
without current pathological
fracture

Rare (0.044%) 0.074 These would be expected
to be identical.

onymous.
We observed that many high-similarity codes also had a

relatively high frequency in the dataset (with the 300 most
common codes appearing in 1.15 - 27.55% of the dataset). In
contrast, we identified some strongly medically related codes
that had a low cosine similarity. These low-similarity codes
tended to also be rare in the dataset, appearing in fewer than
30 patient records in the pre-processed dataset while account-
ing for 72.17% of unique codes.

We then created groupings of diagnosis codes to compare
by frequency, computed as the fraction of total patient records
the code appeared in. We selected the 300 most common
codes (Comm), a random sample of 300 rare codes that ap-
peared in fewer than 30 patients (Rare), and a random sample
of 300 codes from the whole dataset, weighted by frequency
(Rand). The uncommon codes in Table 1 fall into the rare
category. We computed cosine similarities between embed-
ding vectors of codes within each group and between groups.
The distributions of cosine similarities are shown in Figure
1. The means of each distribution were all significantly dif-
ferent from one another (two-tailed t-test corrected for mul-
tiple comparisons, |z|> 10, p < 0.001, n = 90,000). Table 2
presents the summary statistics of each distribution.

The cosine similarities between pairs of common codes
(Comm-Comm) were significantly higher on average than
those of pairs of random codes (Rand-Rand). Moreover, the
Comm-Rare distribution had a significantly lower mean than
the Rand-Rand distribution. The Rare-Rare distribution had a

significantly higher mean than the Rand-Rand distribution as
well.

The distributions in Figure 1 suggest suggest that the co-
sine similarity between medical code embeddings was influ-
enced by the frequency of the code in the dataset, including
spuriously high similarities among both common codes and
rare codes, and low similarities between medically related
common and rare codes. Without frequency-biased similar-
ity between embedding vectors, we would expect the distri-
bution of similarities in all these cases to be like Rand-Rand,
where the bulk of codes have a cosine similarity close to 0,
and a positive tail due to codes that are medically related
to each other, which we would desire to have a high cosine
similarity. We observed similar patterns in the embeddings
of models trained on smaller subsets of the training data.
Though we wondered whether the excessive similarity among
rare codes might be more pronounced in smaller datasets, the
mean Rare-Rare similarity was not higher after training with
any of these subsets than with the full dataset, suggesting a
weak relationship with dataset size.

Finally, we observed that the model’s output was biased
towards predicting more common codes. Figure 2 shows that
the distribution of predicted codes had a higher density at
higher frequency codes and did not reproduce the long tail
of less frequent codes that was found in the data. The me-
dian log frequencies in the labels and predictions were -1.847
and -1.523 and the two distributions differed significantly
(Mann–Whitney U = 1,017,634,615, p < 0.001, two-tailed,
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Table 2: Cosine similarity distribution statistics

Distribution Mean (std) 95% CI on the mean
Rand–Rand 0.018 (0.101) [0.017, 0.018]
Comm–Comm 0.058 (0.109) [0.057, 0.058]
Rare–Rare 0.264 (0.087) [0.263, 0.264]
Rand–Comm 0.024 (0.098) [0.024, 0.025]
Rand–Rare -0.023 (0.108) [-0.024, -0.023]
Comm-Rare -0.098 (0.064) [-0.099, -0.098]

n = 51,983).

IV. DISCUSSION

The learned embedding similarities of diagnostic codes ex-
hibited a systematic bias related to code frequency. Rare
codes tended to be similar to each other, and the same was
true for common codes. We also observed a bias in the net-
work’s output towards predicting high frequency codes. Past
work on medical embeddings in language models suggested
that embedding vectors for medically related concepts have
high cosine similarity [5]. However, that study only examined
the similarity neighbourhoods of the most common codes.
Our results show that dissimilar vectors can be learned for
medically similar codes with different frequencies.

Study limitations include that the dataset used was rela-
tively small compared to those used by other BERT-based
models such as BEHRT [5] (190 thousand vs. 1.6 million pa-
tients). Coding practices may also differ by hospital; codes
that are used infrequently in one setting may not actually
describe an uncommon event. Future work should evaluate
whether the biases found occur with other medical datasets.

In conclusion, this study suggests that though this fre-
quency bias may improve accuracy on MLM tasks, BERT
transformer models trained on health record data may gen-
eralize poorly to less frequently used medical codes. This is
problematic because the distribution of code frequencies has
a long tail, with rare codes more likely to be confused for each
other and less likely to be predicted overall (Figure 2). This
motivates further study towards improving generalization.
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