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Abstract— Patients with implants may need to undergo Mag-
netic Resonance Imaging (MRI) at lower field strengths to avoid
negative impacts from the strong electromagnetic fields. How-
ever, the quality of low-field MRI images may be inferior, po-
tentially leading to inaccurate clinical diagnoses. To overcome
this limitation, our study proposes a convolutional neural net-
work developed by using U-Net to generate high-field MR im-
ages from low-field ones. The proposed model employs multiple
MRI contrasts at lower field strength to generate MR images in
one or several contrasts at higher field strength. This method
overcomes the limitations of previous research which only uti-
lized a single contrast (one contrast-to-one contrast transla-
tion) or multiple contrasts including MR image at high (tar-
get) field strength as input. After creating a dataset for multi
contrast-to-one contrast translation, the model was optimized
using techniques such as data augmentation and selection of the
best model with minimum validation loss. The generated MR
images were evaluated using metrics such as Mean Squared Er-
ror (MSE), Pearson Correlation Coefficient (Corr), and Peak
Signal-to-Noise Ratio (PSNR). The results indicate that for pre-
dicting T1- and PD-weighted MR images at high field strength,
the average range of MSE and PSNR over the test dataset (1392
images) did not result in improvements compared to one-to-
one translation, while Corr shows improvement in PD-weighted
MR image prediction. Also, the reported results for the average
range of MSE and PSNR suggest improvements in high-field T2-
weighted MR image prediction using multi-to-one translation.
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I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a widely used diag-
nostic tool in clinical settings, and the main magnetic field
strength used can vary from 0.2 to 3 Tesla depending on the
targeted area, the required precision for diagnosis, and scan-
ner availability [1, 2, 3]. However, for patients with implanted
medical devices (e.g., patients with brain implants), the use of
strong electromagnetic fields like MRI can have detrimental
effects, including movement of implanted medical devices,
burns in the surrounding tissue, and malfunction or failure in
the implanted medical device [4, 5, 6, 7, 8]. To mitigate these
risks, it may be necessary to take MR images from these pa-
tients at lower field strengths, such as 0.5 Tesla. As a result,
the quality of images taken at lower field strengths can be
inferior, potentially leading to inaccurate clinical diagnoses

and inappropriate medical treatment. Furthermore, our study
is motivated by the high costs of magnetic resonance imaging
(MRI), particularly for high-field MRI. Thus, low-field MRI
has emerged as a more affordable and accessible alternative
to patients, but its image quality may not be sufficient for cer-
tain applications [9].

To address this issue, this study proposes a technique that
enhances the quality of low-field MR images by predicting
MR images taken at high magnetic field strength, offering
potential cost savings to patients and healthcare providers. It
is worth noting that this technique can be applied beyond the
specific field strengths tested in this study, such as predicting
7T MR images from 1.5T or 3T ones. In previous research,
deep learning models have been used in various ways to pre-
dict the image at higher field strength in different contrasts.
These include: I) predicting MR image at high field strength
in specific contrast from another contrast at the same field
strength (cross-modality) [10, 11]. For example, they have
used T1-weighted images to predict T2-weighted images at
the same field strength. II) predicting MR image at higher
field strength in specific contrast (mostly T1-weighted) us-
ing the same contrast at lower field strength (i.e., one-to-one
translation) [12]. III) predicting MR image at higher field
strength using an MR image in another contrast at the same
field strength (target field strength) in addition to the MR im-
age at lower field strength as the second input [13]. These
studies have limitations such as using only one contrast to
predict the image of the same contrast at higher field strength
and using inputs at high (target) field strength which is not
possible to be applied for patients who are not allowed to be
scanned at high field strength.

Each MRI contrast has unique features, applications, and
sensitivity to different tissue properties. Also, MR images are
often acquired with a weighting factor (e.g., T1-weighted),
which means that other contrasts (e.g., T2 and PD) have mi-
nor contribution to the data acquisition. As a result, depend-
ing on the scanning parameters, one contrast may be a combi-
nation of other contrasts at different field strengths, and MR
image in a specific contrast at high field strength may be bet-
ter predicted through the combination of several contrasts at
a lower field strength.

This research proposes a framework to overcome the
aforementioned limitations by utilizing multiple MRI con-
trasts at lower field strength to predict the MR image in one or
several contrasts at higher field strength (multi-to-one trans-
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lation). This approach is based on the understanding that dif-
ferent MRI contrasts show different properties of the tissue
and are applied based the clinical and research question [14].
The goal of this study is to investigate the possibility of gen-
erating 3T MR images from 0.5T ones by using convolutional
neural networks (CNNs), in particular U-Net, and designing
a network for multi-to-one translation. Also, please note that
multi-to-multi translation is equivalent to applying the multi-
to-one translation multiple times for each individual output
contrast.

II. MATERIALS AND METHOD

A. Data

In this work, due to the limitation of suitable datasets includ-
ing MRI scans at 0.5T and 3T in multiple contrasts and for
the same subjects, MRI scans at 1.5T and 3T were utilized for
training and test. Information eXtraction from Images (IXI)
dataset which includes MR images in 3 contrasts (T1-, T2-,
and PD-weighted) for 181 subjects at 1.5T and another set of
181 subjects at 3T was used for creating a dataset in 3 con-
trasts for the same pseudo-subjects at 1.5T and 3T [15].

B. Pre-processing

To make the IXI dataset applicable for multi-to-one trans-
lation from lower field strength to higher field strength and
create a dataset including MR images in multiple contrasts
at both 1.5T and 3T for the same pseudo-subjects (i.e., dif-
ferent subjects but with non-affine registration), several pre-
processing steps were performed. The MR images were reori-
ented to the standard orientation, cropped to 150x256, and the
brain was extracted using FSL software [16]. Next, to gen-
erate MR images for the same pseudo-subjects, subjects at
1.5T and 3T were paired based on sex and age and T2- and
PD-weighted MR images were registered to T1-weighted MR
images at each field strength. Afterwards, 1.5T MR images
were taken as reference and 3T MR images (same pseudo-
subjects) were registered to respective contrast at 1.5T us-
ing Advanced Normalization Tools (ANTs) Software [17].
Finally, after transforming 3D MR images to 2D, we selected
the slices occupied by the brain (i.e., 10 slices per 3D MR
image) and avoided slices with no or little brain and applied
data augmentation techniques such as: flipping, rotating with
the angle of ±5 degrees, adding noise (e.g., Gaussian and Salt
and Pepper), and scaling. As a result, data size for each con-
trast at each field strength was increased to 3618, 1566, and
1392 for train, validation, and test sets, respectively.

C. Deep neural network architecture

Convolutional Neural Networks (CNNs) are common ma-
chine learning models for the generation of synthetic images
[18]. U-Net is one popular type of CNNs that has shown more

promising results in domain transfer, super-resolution, and
other similar non-MRI applications compared to other net-
works [19]. In this study, our goal was to implement a UNet-
based model for multi-to-one translation (e.g., T1-, T2-, and
PD-weighted at 1.5T→T1-weighted at 3T), so that we can in-
vestigate the effect of using multiple contrasts at lower field
strength to predict the image in specific contrast at higher
field strength and compared it to one-to-one translation (e.g.,
T1-weighted at 1.5T→T1-weighted at 3T)(Fig. 1).

Fig. 1: One-to-one vs. Multi-to-one translation

In general, U-Net consists of encoder (down-sample) and
decoder (up-sample) parts with skip connections which can
be visualized in a U-shaped architecture [20]. As Fig. 2 il-
lustrates, similar to the base architecture of U-Net, the im-
plemented model is made of: I) 4 down-sampling blocks in
the contracting path each consisting of 2 convolutional layers
with a kernel size of 3x3, same padding, and stride of 2 pix-
els. The first convolutional layer is followed by a rectified lin-
ear unit (ReLU) activation function, while the second is fol-
lowed by a ReLU activation function and a 2x2 max-pooling
operation with a stride of 2 pixels. II) 4 up-sampling blocks
in the expanding path including up-sampling layer (nearest-
neighbor interpolation) followed by 2 convolutional layers
with a kernel size of 3x3, same padding, and stride of 2 pixels
(dropout with a rate of 0.2 was added to the first convolutional
layer in each block). Also, features from each block in the
encoder were concatenated with their corresponding block in
the decoder using skip connections. Finally, a 1x1 convolu-
tional layer with a stride of 1 and a linear activation function
was used as the output layer. Moreover, the model can accept
images of any size (e.g., 150x256 in this case), as the input
layer resizes them to the standard size of 224x224, and then
converts them to their original size in the output layer.

Fig. 2: Proposed U-Net architecture
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D. Training

The model was implemented in python using TensorFlow
backend on a computer equipped with 32Gb RAM and
NVidia Geforce RTX 3080 graphics card. It was trained
on training set and validated using validation set using 150
epochs of training with a batch size of 32 using Adam op-
timizer with a learning rate of 0.001. Both Huber and Mean
Squared Error (MSE) were utilized as loss functions; as MSE
had the highest performance in training the network, it was
used for the reported results. However, MSE and Huber loss
functions may not be very sensitive to local errors and there-
fore, other loss functions have to be explored in future re-
search. Also, the model with the minimum validation loss
during 150 epochs of training was saved for further model
evaluation using the test data with a size of 1392.

E. Evaluation metrics

To evaluate the results, evaluation metrics including MSE,
Pearson Correlation Coefficient (Corr), and Peak Signal to
Noise Ratio (PSNR) as defined in Eq. 1, 2, and 3, respec-
tively, were used.

MSE(x,y) =
1
n

n

∑
i=1

(yi − xi)
2. (1)

ρ(x,y) =
∑

n
i=1(yi −µy)(xi −µx)

σx ×σy
. (2)

PSNR(x,y) = 10log10 (
I2
max

MSE
), Imax = maximum pixel value.

(3)

III. RESULTS AND DISCUSSION

To determine the best model, parameters such as activation
function, loss function, and convolutional layers were applied
in various combinations. To investigate the effect of MRI con-
trast selection, the result of predicting each contrast by multi-
to-one translation and one-to-one translation were compared
as shown in Table 1. As the reported results of MSE and
PSNR suggest, for predicting T1- and PD-weighted MR im-
ages at high field strength, using multiple contrasts as input
did not result in improvements, while the reported Corr was
higher for multi-to-one PD-weighted MR image prediction.
Also, the results of T2-weighted MR image prediction had
improvements using multi-to-one translation.

Moreover, Fig. 3 indicates that although the reported val-
ues of MSE, Corr, and PSNR for generated MR images us-
ing one-to-one and multi-to-one translation are within a close
range, T2- and PD-weighted images generated using multi-
to-one translation are sharper with more detail compared to
those generated through one-to-one translation, which are
smoother and less detailed. Additionally, synthetic images
generated using U-Net exhibit smoothing compared to the

original images, which may result in lower diagnostic accu-
racy.

Table 1: Quantitative results of generated MR images using U-Net for
multi-to-one/one-to-one translation compared with the ground-truth images

evaluated using MSE, Corr, and PSNR metrics on the test dataset (The
direction of vertical arrow indicates the trend for higher image qualities.

Results are reported as the mean ± standard deviation and the best results
are highlighted in bold).

Translation(1.5T→3T) MSE↓ Corr↑ PSNR↑
T1 →T1 0.0028±0.0016 0.98±0.003 25.83±1.71
T1, T2, PD → T1 0.0033±0.002 0.98±0.003 25.16±1.87

T2 → T2 0.0046±0.0022 0.94±0.018 23.78±1.95

T1, T2, PD → T2 0.0043±0.0018 0.94±0.016 23.97±1.72
PD → PD 0.0047±0.002 0.98±0.006 23.55±1.76
T1, T2, PD → PD 0.0047±0.002 0.99±0.005 23.49±1.73

Fig. 3: The comparison of generated MR images using U-Net model for
both multi-to-one and one-to-one translation for one subject on a test

dataset. From left to right: input MR images; label MR images; generated
MR images using multi-to-one translation; generated MR images using

one-to-one translation are displayed.

Possible considerations that may lead to these results in-
clude: I) limitation in a dataset which includes MRI scans
in multiple contrasts at low and high field strength for the
same subjects. As the dataset used for training and testing
was created using registration techniques, there may be small
errors in registration that lead to differences in some parts
(e.g., edges) of the input image (MR image at 1.5T) and the
target image (MR image at 3T), which can negatively impact
the reported evaluation values for the generated and target
images. II) using common global evaluation metrics such as
MSE, Corr, and PSNR that may not be capable of captur-
ing small local errors and showing the location and the spa-
tial scale of the error which potentially result in overlap or
small difference between the range of reported values for the
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best and worst outputs. To address these limitations, improve
the results, and test generalizability, further explorations are
needed, such as: I) utilizing the network on real data, II) in-
vestigating other deep neural architectures, III) using alterna-
tive metrics, which are more sensitive to artifacts and local
errors.

IV. CONCLUSION

The use of MRI at high field strengths can have adverse ef-
fects on patients with implanted medical devices. To mitigate
these risks, MR images of these patients are usually taken at
lower field strengths, possibly resulting in lower image qual-
ity and potentially leading to inaccurate clinical diagnoses.
To address this issue, this study proposed a U-Net model that
enhances the quality of low-field MR images by predicting
MR images taken at high magnetic field strength in one or
several contrasts, utilizing multiple MRI contrasts at lower
field strength. The results showed that using multi-to-one
translation for T2-weighted MR image prediction had im-
provements compared to using a single contrast. In contrast,
for T1- and PD-weighted MR images, although the multi-to-
one translation resulted in more detailed and sharper outputs,
the evaluation values were similar and did not demonstrate
any improvements (except for Corr which demonstrated im-
provement in PD-weighted MR image prediction). The study
has limitations, such as the use of an artificial dataset and
global evaluation metrics. Further research is needed to ad-
dress these limitations and improve the results by applying
different techniques, such as using additional data, explor-
ing different deep neural network architectures, and utilizing
more sensitive and localized evaluation metrics.
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14. M. Symms, H. Jäger, K. Schmierer, and T. Yousry, “A review of struc-
tural magnetic resonance neuroimaging,” Journal of Neurology, Neuro-
surgery & Psychiatry, vol. 75, no. 9, pp. 1235–1244, 2004.

15. I. C. L. Biomedical Image Analysis Group, “IXI Dataset,” https://brain-
development.org/ixi-dataset, [Online; accessed 28-December-2021].

16. C. Jack, V. Lowe, M. Senjem, S. Weigand, B. Kemp, M. Shiung,
and R. Petersen, “Pre-dementia memory impairment is associated with
white matter tract affection,” The American Journal of Geriatric Psy-
chiatry, vol. 17, pp. 368–375, 2009.

17. B. B. Avants, N. Tustison, G. Song et al., “Advanced normalization
tools (ants),” Insight j, vol. 2, no. 365, pp. 1–35, 2009.

18. Y. Pang, J. Lin, T. Qin, and Z. Chen, “Image-to-image translation:
Methods and applications,” IEEE Transactions on Multimedia, vol. 24,
pp. 3859–3881, 2021.

19. X. Hu, M. A. Naiel, A. Wong, M. Lamm, and P. Fieguth, “Runet: A
robust unet architecture for image super-resolution,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2019, pp. 0–0.

20. T. Olaf Ronneberger, P. Fischer, and Computer, “U-net: Convolutional
networks for biomedical image segmentation.”

The 45th Conference of The Canadian Medical and Biological Engineering Society
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